种种迹象表明:前端岗位即将消失

最近,腾讯混元大模型的HR约我面试,为了确定是否真招人,我打开了腾讯内推的小程序,确实有这个岗位,但整个深圳也只有这一个。

于是,我突然意识到:在大模型时代,前端工程师这个岗位应该会是最先消失的岗位。

AI程序员的诞生

24年年初,英伟达CEO黄仁勋表示,自己相信就在不久的将来,人类再也不需要学习如何编码了,孩子们应该停止编程课。

然后24年3月,一家叫Cognition美国初创公司,发布了首个AI软件工程师Devin。它掌握全栈技能,云端部署、底层代码、改bug、训练和微调AI模型都不在话下。

只需一句指令,Devin就可端到端处理整个开发项目,这再度引发“码农是否将被淘汰”的大讨论。在SWE-bench上,它的表现远远超过Claude 2、Llama、GPT-4等选手,取得了13.86%的惊人成绩!

也就是说,它已经能通过AI公司的面试了。

接着4月,阿里发布消息称,其迎来了首位 AI 程序员——通义灵码。并在阿里云上海AI峰会上,阿里云宣布推出首个AI程序员,具备架构师、开发工程师、测试工程师等多种岗位的技能,能一站式自主完成任务分解、代码编写、测试、问题修复、代码提交整个过程,最快分钟级即可完成应用开发,大幅提升研发效率。

此次发布的AI程序员,是基于通义大模型构建的多智能体,每个智能体分别负责具体的软件开发任务并互相协作,可端到端实现一个产品功能的研发,这极大地简化了软件开发的流程。

由此带来的影响

一方面, AI技术的迅速发展和普及势必给程序员的工作带来冲击:传统的编码方式将显著改变,水平一般的程序员被取代的趋势或不可避免。

另一方面,尽管AI可以辅助程序员快速生成代码、提高开发效率,但并不能完全取代程序员的角色,尤其是技术理解深厚、能力强大的高水平程序员。

对于未来的程序员而言,掌握AI技术并应用于自己的工作流程中,与AI协同工作从而提高自己的工作效率和编码质量,是与时俱进、适应市场的必然需求。

由此,未来一名好的程序员不应仅仅是一名技术人员,还需要具备广泛的知识和技能。他们是整个人、机、环境系统框架中的创造者,要持续创新、创造价值。

具体而言,为了编写高质量代码,他们可能要精通多种编程语言;为了能按需选用合适的技术方案,他们要能迅速适应新的技术和工具。

为了面对复杂问题时能抓住原因并及时分析解决,他们必须保持与团队及客户的高效沟通协作,并不断积累知识、经验,同步跟进行业技术前沿,针对具体问题设计出创新的解决方案,保障程序的稳定性和可靠性。

所以,去年我在 从美团的开发通道合并谈谈开发的职业规划 就提出:LLM在软件工程的采用,将在众多工程领域产生突破,甚至于颠覆,由此也敦促我们必须认真审视专业能力的变迁和专业角色的定义。

为何最先消失的是前端岗

在我去年写前端学哪些技能饭碗越铁收入还高时,我还没有前端岗位可能即将消失的观点,但过去半年和很多猎头聊了一下前端岗的机会,以及看了很多后端培训课程中都包含前端的知识技能。

再结合22年我在美团内部,给几百个后端同学培训如何快速上手前端开发,我觉得前端这个岗位很有可能以后在招聘中就看不到这一细分岗位了。

其实15年前,全球应该都没有前端工程师这个岗位,当时的多数前端工作都比较简单,一部分是后端自己做,一个部分则是设计出生的切图仔完成~

后来随着移动互联网的兴起,前端开发语言发布了全新的规范ES6,整个前端开发生态逐步繁荣了起来,因为发展很快,网页的多端兼容和多版本工作比较繁杂,所以前端工作才由一个全新的岗位为负责。

原本很多前端同学在整个系统开发中就处于辅助角色,经常是多个团队的后端争抢一个专业的前端工程师,但如今,随着前端技术已经非常成熟和完善和大模型技术的加持,后端完成前端工作越来越容易。

所以,各公司自然就会减少很多前端岗位的招聘,只有少量技术比较新或业务比较复杂的项目才需要少量专职的前端工程师。

从各公司合并开发通道来看,消失的不仅是前端,还有后端和系统开发,对外招聘岗位都是软件工程师,工作内容根据需要动态调整。

总结

知识本身并不是力量,能有效将知识应用于实践才是真正的力量。同样,大量的编程知识可能是有价值的,但若不会运用、不知变通,无法解决实际问题,它就很难产生任何实质性影响。

能够有效使用程序,意味着智能体正具备将知识与学习应用转化的能力。这就需要程序员具备一些编程规则之外的能力,如分析、判断、解决问题的能力等。

程序员之所以能够不被取代,底气正在于其能将所学与实际情况相结合,并作出正确决策,而不是像AI程序员那样的编程工具,为了编程而编程。

未来,AI负责基础重复性劳动、人类程序员负责顶层设计的模式已经初露端倪,而认为人类程序员将被AI取代、沦为提要求的“边缘人”,为时尚早。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓请添加图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值