SenseVoice多语言语音理解模型之最新部署落地经验

SenseVoice是阿里云通义实验室开发的一款多语言音频基础模型,专注于高精度多语言语音识别、情感辨识和音频事件检测。

SenseVoice支持超过50种语言的识别,并且在中文和粤语上的识别效果优于Whisper模型,提升了50%以上。

SenseVoice具备强大的情感识别能力,能够检测音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件。

SenseVoice模型在推理速度上表现出色,其小型模型SenseVoice-Small采用非自回归端到端框架,10秒音频的推理时间仅为70毫秒,比Whisper-large快15倍。

github项目地址:https://github.com/FunAudioLLM/SenseVoice。

一、环境安装

1、python环境

建议安装python版本在3.10以上。

2、库安装

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install funasr-onnx gradio -i https://pypi.tuna.tsinghua.edu.cn/simple

为了方便音频处理,还需要安装ffmpeg,命令如下:

apt install ffmpeg

3、SenseVoiceSmall模型下载

### 如何安装 SenseVoiceSmall #### 环境准备 为了成功部署SenseVoiceSmall,需先准备好相应的运行环境。推荐使用Python虚拟环境来管理依赖包版本,确保不同项目之间的兼容性[^1]。 ```bash python3 -m venv sensevoice-env source sensevoice-env/bin/activate # Linux or macOS sensevoice-env\Scripts\activate.bat # Windows ``` #### 安装依赖库 进入创建好的虚拟环境中后,通过pip工具安装必要的Python库文件。这一步骤对于保证程序正常运作至关重要。 ```bash pip install --upgrade pip pip install -r requirements.txt ``` 这里`requirements.txt`应该放置于GitHub仓库根目录下,包含了所有必需的第三方模块列表。 #### 下载预训练模型 根据官方文档说明,SenseVoiceSmall已经提供了经过大量数据训练完成的基础模型权重文件供下载。访问指定链接获取对应资源并解压至合适位置。 #### 配置参数调整 部分配置项可能需要依据实际应用场景做适当修改,比如硬件设备的选择(CPU/GPU)、输入音频采样率等设置可以在config.yaml里找到相应条目进行编辑。 ```yaml device: "cuda" # 或者 "cpu" sample_rate: 16000 ``` #### 测试验证 最后,在一切准备工作就绪之后,可以尝试执行测试脚本来检验整个流程是否顺畅无误。通常情况下,开发者会提供一些简单的例子帮助使用者快速上手体验功能特性。 ```python from sensevoice import inference result = inference.predict("path_to_audio_file.wav") print(result) ``` 以上就是关于SenseVoiceSmall完整的安装指南描述过程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值