SenseVoice 语音识别微调技术方案

一、项目背景

        随着人工智能技术飞速发展,语音识别技术已成为人机交互的重要接口之一。在语音输入法、语音导航、智能会议纪要等多个应用场景中,高效的语音识别能力对于提升用户体验至关重要。本项目旨在通过SenseVoice产品,实现针对中文通用场景下的高精度语音识别自训练,以满足特定业务场景下的定制化需求。

二、SenseVoice介绍

        SenseVoice是由FunAudioLLM团队开发的音频基础模型,SenseVoice作为一款专注于高精度多语言语音识别的模型,其独特之处在于其广泛的语言覆盖、强大的情感辨识能力以及高效的推理性能。该模型基于超过40万小时的多样化语音数据训练而成,能够支持超过50种语言的识别,展现出卓越的跨语言识别能力。与市场上其他主流模型相比,SenseVoice在识别精度上实现了显著提升,特别是在复杂场景下的表现尤为出色。此外,SenseVoice还提供了便捷的微调脚本与策略,帮助用户根据特定业务场景进行模型定制与优化。

三、方案选型

        最开始准备使用的是百度推出的PaddleSpeech产品来完成语音识别任务,经过尝试发现该模型不适用,主要有以下3方面的原因:

  1. 模型版本比较旧,在服务器上部署存在一些依赖冲突问题需要解决,这个步骤很耗时。测试时使用的阿里云上的Ubantu服务器,这个问题是解决了。但如果部署到公司的服务器,之前的解决方案不一定行得通,可能需要重新探索;
  2. 官方GitHub代码很长时间没有维护,文档里的步骤和实际使用存在出入,需要自己改造,根据文档教程自训练时源代码会报错,这些bug无法在官网以及网络上找到解决方案。
  3. 使用PaddleSpeech训练时,要求的单样本时长不超过50s,只支持wav格式,这个限制不适用实际业务场景。经过以上原因分析,不采用PaddleSpeech,经过调研最终选SenseVoice产品。

四、模型选型

        SenseVoice支持多种预训练模型,和魔搭集成度比较好。一般默认的是使SenseVoiceSmall模型,但在本方案中没有采用这个模型,基于以下几个理由:

        1.SenseVoiceSmall支持富文本识别,包括情感识别和声音事件检测,所需要的数据集的格式也需要体现这两方面的内容。考虑到本项目只是基础的语音识别范畴,不需要额外的富文本识别;

        2.SenseVoiceSmall模型对于时长在几个小时的长音频文件的识别效果还有待验证。

 基于前面两点的考虑,最终我们选用Paraformer语音识别-中文-通用-16k-离线-larg

要构建一个实时语音识别系统,funasr库提供了强大的支持,而pyaudio则是处理音频输入的关键组件。具体步骤如下: 参考资源链接:[利用funasr与pyaudio开发实时语音识别系统](https://wenku.csdn.net/doc/3j42comm9c) 首先,需要安装必要的Python环境和库。推荐使用Anaconda3来管理Python环境和相关依赖,确保Python版本为3.9以保证与funasr的兼容性。同时,安装PyTorch 2.0.1版本和CUDA 11.7对应的cuDNN来支持深度学习模型的GPU加速。 接下来,安装funasr和PyAudio库。funasr库可以下载并安装最新版本,PyAudio可以通过pip进行安装,以确保可以进行音频数据的实时捕捉。 之后,需要准备一个预训练的语音识别模型。可以通过ModelScope获取经过优化的模型,这样可以保证识别的准确性和实时性。 编写代码实现实时语音识别系统的核心流程如下: 1. 初始化PyAudio,设置输入流参数,如采样率、通道数等。 2. 通过PyAudio的输入流捕获麦克风输入的音频数据。 3. 使用funasr进行实时的音频流处理,将其转换为语音识别引擎可以处理的格式。 4. 将处理后的音频流送入预训练模型,获取识别结果。 5. 将识别结果输出为文本,可以在控制台打印或者写入文件。 在代码实现中,需要注意实时处理的同步问题,确保音频流的实时捕捉和处理不会因为模型处理速度而发生延迟。 通过上述步骤,你可以完成一个基于funasr和pyaudio的实时语音识别系统。由于funasr本身提供了丰富的文档和教程,你可以参照《利用funasr与pyaudio开发实时语音识别系统》中的示例代码和详细说明,以获得更深入的理解和实践指导。 当你的系统运行起来后,为了进一步提升识别的准确度和性能,你可以考虑对预训练模型进行微调,以及优化实时处理的算法。这时,结合PyTorch的官方文档和ModelScope社区提供的技术资源,将非常有助于你深入研究和开发。 建议在掌握基本的实时语音识别系统构建后,进一步学习更多关于深度学习模型训练和优化的知识,以便在实际项目中更好地解决遇到的问题,并提升系统的整体性能。 参考资源链接:[利用funasr与pyaudio开发实时语音识别系统](https://wenku.csdn.net/doc/3j42comm9c)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值