SenseVoice 语音识别微调技术方案

一、项目背景

        随着人工智能技术飞速发展,语音识别技术已成为人机交互的重要接口之一。在语音输入法、语音导航、智能会议纪要等多个应用场景中,高效的语音识别能力对于提升用户体验至关重要。本项目旨在通过SenseVoice产品,实现针对中文通用场景下的高精度语音识别自训练,以满足特定业务场景下的定制化需求。

二、SenseVoice介绍

        SenseVoice是由FunAudioLLM团队开发的音频基础模型,SenseVoice作为一款专注于高精度多语言语音识别的模型,其独特之处在于其广泛的语言覆盖、强大的情感辨识能力以及高效的推理性能。该模型基于超过40万小时的多样化语音数据训练而成,能够支持超过50种语言的识别,展现出卓越的跨语言识别能力。与市场上其他主流模型相比,SenseVoice在识别精度上实现了显著提升,特别是在复杂场景下的表现尤为出色。此外,SenseVoice还提供了便捷的微调脚本与策略,帮助用户根据特定业务场景进行模型定制与优化。

三、方案选型

        最开始准备使用的是百度推出的PaddleSpeech产品来完成语音识别任务,经过尝试发现该模型不适用,主要有以下3方面的原因:

  1. 模型版本比较旧,在服务器上部署存在一些依赖冲突问题需要解决,这个步骤很耗时。测试时使用的阿里云上的Ubantu服务器,这个问题是解决了。但如果部署到公司的服务器,之前的解决方案不一定行得通,可能需要重新探索;
  2. 官方GitHub代码很长时间没有维护,文档里的步骤和实际使用存在出入,需要自己改造,根据文档教程自训练时源代码会报错,这些bug无法在官网以及网络上找到解决方案。
  3. 使用PaddleSpeech训练时,要求的单样本时长不超过50s,只支持wav格式,这个限制不适用实际业务场景。经过以上原因分析,不采用PaddleSpeech,经过调研最终选SenseVoice产品。

四、模型选型

        SenseVoice支持多种预训练模型,和魔搭集成度比较好。一般默认的是使SenseVoiceSmall模型,但在本方案中没有采用这个模型,基于以下几个理由:

        1.SenseVoiceSmall支持富文本识别,包括情感识别和声音事件检测,所需要的数据集的格式也需要体现这两方面的内容。考虑到本项目只是基础的语音识别范畴,不需要额外的富文本识别;

        2.SenseVoiceSmall模型对于时长在几个小时的长音频文件的识别效果还有待验证。

 基于前面两点的考虑,最终我们选用Paraformer语音识别-中文-通用-16k-离线-larg

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值