已知:矩形长宽皆为1,则内切圆半径为0.5.求:该圆面积(利用蒙特卡洛算法)
编程思路如下:
1,利用random.unifom生成0到1之间的数字,分别赋值给x,y。
2,判断生成点是否落在矩形区域内。记录落在区域内点的个数。
3,圆面积与矩形面积之比接近落在区域内点数与总点数之比。
import math
import random
M = 100000 # 输入的数一般要很大才能保证所求结果不会产生较大误差
N = 0 # 累计落在圆内的随机点的个数,初始值为零
for i in range(int(M)):
x = random.uniform(0,1)# 产生随机数,区间(0,1)
y = random.uniform(0,1)
if (x -0.5)** 2 + (y-0.5) ** 2 <= 0.5*0.5: # 判断产生的随机点是否落在圆内
N = N + 1 # 对落在圆内的点进行累加
s=N/M
print(s)
该代码实现较简单,下面实现画图过程。
学习得知scatter,利用其传入坐标,可以画散点图,第一次直接在循环内利用该函数。运行后发现不足,在落点较少时,程序正常运行,但落点增加后,程序运行时间很长。
if (x -0.5)** 2 + (y-0.5) ** 2 <= 0.5*0