蒙特卡洛算法求矩形内切圆面积

已知:矩形长宽皆为1,则内切圆半径为0.5.求:该圆面积(利用蒙特卡洛算法)

编程思路如下:

         1,利用random.unifom生成0到1之间的数字,分别赋值给x,y。

          2,判断生成点是否落在矩形区域内。记录落在区域内点的个数。

          3,圆面积与矩形面积之比接近落在区域内点数与总点数之比。

import math
import random
M = 100000 # 输入的数一般要很大才能保证所求结果不会产生较大误差
N = 0  # 累计落在圆内的随机点的个数,初始值为零
for i in range(int(M)):
    x = random.uniform(0,1)# 产生随机数,区间(0,1)
    y = random.uniform(0,1)
    if (x -0.5)** 2 + (y-0.5) ** 2 <= 0.5*0.5:  # 判断产生的随机点是否落在圆内
        N = N + 1  # 对落在圆内的点进行累加
s=N/M
print(s)

该代码实现较简单,下面实现画图过程。

学习得知scatter,利用其传入坐标,可以画散点图,第一次直接在循环内利用该函数。运行后发现不足,在落点较少时,程序正常运行,但落点增加后,程序运行时间很长。

 if (x -0.5)** 2 + (y-0.5) ** 2 <= 0.5*0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值