Lora模型训练一文搞懂!

在电商设计中,实际运用于工作的开始其实就是炼丹,也就是lora模型的训练。

我们需要根据自己的类目和产品训练适合自己的模型和场景,那今天我就跟大家讲一讲模型炼丹的那些事。

---------------------------------------------------------------------------

1-

首先:

选择合适的炼丹炉,这里我经常使用的是秋葉的开源训练工具lora-scripts

img

之所以使用这样的模型训练器是因为它可以自主的设置更多的数据、步数,图片尺寸,已经训练精度,能够完全把控,而市面上也有一些网站的训练器,目前我并没有觉得有哪个比这个好用。

2-

​ 选好了炼丹炉,接下来就是需要收集足够多的图片素材,这里我推荐收集200张左右就够了,也有用十几张或者几千张的,但数量太少,训练的最终模型出图效果不会太好,图片数量太多,炼丹对电脑的要求又太高,甚至动辄两三天训练不成一个模型,这样也不利于我们测试模型效果。

另外需要注意的是,在收集图片的时候尽量保持它们的长宽形态一致,竖图海报就全是竖图,横屏就全是横屏,不要混合在一起,最小尺寸控制住,比如所有图都是高于500的宽度的,这样最终的模型出图效果才能保持水准一致。

img

3-

接下来就可以给图片打标

打标是最关键的一步,意思就是我们需要提取每张图片的关键词信息,

这里我们使用WD1.4标签器,将图片的文件夹目录和打标模型选上就可以了,右下角启动,标签器会自动进行打标,

这里有一个小问题:阈值推荐大于0.35,实际上是数值越小,所得到的打标词越多,虽然会稍微有些不精准,但我一般还是会设置0.2-0.35之间这样的数值。

img

img

最后图片文件夹中就会得到每张图的关键词文件:

img

img

我们需要把这个文件夹复制到训练器的后台文件夹中,找到一个叫train的文件夹,放进去之后给文件夹随便命个名,我这里用001代替,

然后我们需要在这个文件夹中再新建一个空文件夹,命格式为 10_001,把图片和关键词文件全部都放到这个文件夹中,这一步的含义其实就是指:我每张图要训练的步数是10,总调用的文件夹是001. 保证这两个文件夹就可以了,tips:下划线别打错哦。

img

img

4-

到这一步,我们就可以正视开始训练模型了,选择训练器新手模式(新手足够了),如图填写各个目录和数值,开始训练。

img

img

img

训练的速度取决于图片大小和多少以及电脑配置,因人而异,耐心等待即可,训练过程中后台一定不要随意关掉。

img

--------------------------------------------------------------------------

好了,这就是本次炼丹流程的分享,喜欢的话就给我点个赞吧,下期再见。

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图Stable Diffusion安装包120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册AI绘画视频教程AIGC实战等等。

完整版资料我已经打包好,点击下方卡片即可免费领取!

【Stable Diffusion学习路线思维导图】

img

【Stable Diffusion安装包(含常用插件、模型)】

img

【AI绘画12000+提示词库】

img

【AI绘画800+骨骼姿势图】

img

【AI绘画视频合集】

img

这份完整版的stable diffusion资料我已经打包好,点击下方卡片即可免费领取!

在这里插入图片描述

### GitHub上的Stable Diffusion LoRA训练教程 #### 使用LoRA进行微调的基础概念 在GitHub项目`haofanwang/Lora-for-Diffusers`中提供了易于理解的指导文档,帮助研究人员利用低秩适应(LoRA)技术,在不破坏预训练权重的情况下有效地调整大型模型。这种方法允许开发者仅需少量数据即可实现特定领域或风格的艺术作品生成能力提升[^1]。 #### 安装环境配置 为了能够在本地环境中顺利运行基于PyTorch框架构建的Stable Diffusion与Diffusers库相结合的工作流,建议按照官方指南完成必要的依赖项安装,并通过命令行参数`--enable-insecure-extension-access`来启用某些可能未经过安全验证但对实验至关重要的扩展功能[^2]。 #### 数据准备阶段 当一切就绪之后,下一步就是收集并整理用于训练的数据集。这通常涉及到图像注工作以及确保所使用的图片质量满足要求。对于想要应用LoRA机制的具体案例而言,还需要特别注意输入特征的设计方式及其维度大小的选择等问题[^4]。 #### 训练过程概述 实际操作过程中,可以参照仓库内给出的例子脚本启动训练任务。这些示例不仅展示了如何加载预训练模型作为起点,还介绍了怎样定义损失函数、优化器以及其他超参数设置等内容。值得注意的是,在此期间应当密切关注日志输出中的各项指变化情况以便及时作出相应调整。 ```bash # 假设已经克隆了上述提到的GitHub仓库到当前目录下 cd Lora-for-Diffusers/examples/ python train_lora.py \ --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" \ --dataset_name="your_dataset_directory_here" \ --output_dir="./results" ``` #### 调试技巧分享 如果遇到任何问题或者性能瓶颈,可以通过查阅相关资料获取更多关于调试的信息和支持。例如,《Debug Stable Diffusion WebUI》一文中提到了一些常见的错误提示及解决方案;而《Sampling Methods》则深入探讨了几种不同的采样策略及其应用场景[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值