什么是LoRA模型,如何使用和训练LoRA模型?你想要的都在这

什么是LoRA模型

LoRA的全称是LoRA: Low-Rank Adaptation of Large Language Models,可以理解为stable diffusion(SD)模型的一种插件,和hyper-network,controlNet一样,都是在不修改SD模型的前提下,利用少量数据训练出一种画风/IP/人物,实现定制化需求,所需的训练资源比训练SD模要小很多,非常适合社区使用者和个人开发者。LoRA最初应用于NLP领域,用于微调GPT-3等模型(也就是ChatGPT的前生)。由于GPT参数量超过千亿,训练成本太高,因此LoRA采用了一个办法,仅训练低秩矩阵(low rank matrics),使用时将LoRA模型的参数注入(inject)SD模型,从而改变SD模型的生成风格,或者为SD模型添加新的人物/IP。用数据公式表达如下,其中 W0 是初始SD模型的参数(Weights), BA 为低秩矩阵也就是LoRA模型的参数, W 代表被LORA模型影响后的最终SD模型参数。整个过程是一个简单的线性关系,可以认为是原SD模型叠加LORA模型后,得到一个全新效果的模型。

W=W0+BA

在著名的模型分享网站https://civitai.com/上,有大量的SD模型和LoRA模型,其中SD模型仅有2000个,剩下4万个基本都是LoRA等小模型。例如下图,水墨画和原神八重神子就是LoRA模型来实现特定的画风和人物IP。

img

在模型分享网站civitai上,左上角标注了CHECKPOINT的代表的是SD模型,标注了LORA的就是LORA模型了

以下是一个LoRA模型详解分析,从下图可以看到,该模型只有144MB,相比SD模型至少2GB起步,LORA确实算得上是小模型,非常适合硬件资源受限的用户。值得注意的是,LORA是SD模型的插件网络,所以必须配合SD一起使用。图中标注了Base Model: SD 1.5,意味着该模型是基于SD 1.5训练的,并且在使用时必须配合SD 1.5才能生成想要的效果。

img

由于目前civaitai已经屏蔽了中国用户的访问,所以需要科学上网。

img

如何使用LORA模型

目前社区使用者绝大部分都是基于stable-diffusion-webui这个开源项目,一些相关的整合包(例如秋叶,星空)也是在此基础上进行的简化。因此在这里仅基于这个webui这个项目介绍。

https://github.com/AUTOMATIC1111/stable-diffusion-webuigithub.com/AUTOMATIC1111/stable-diffusion-webui

假设你已经完成了webui的安装,将下载的LORA模型放置在文件夹下 "stable-diffusion-webui/models/Lora"文件夹下,以下以水墨画风格的LoRA为例

img

只需要在生成的时候,prompt增加关键词lora:filename:multiplier即可,以上述下载的LoRA模型Moxin_10为例,需要在prompt中增加以下关键字,0.5代表LoRA的强度,可自由调节

lora:Moxin_10:0.5

以下是实战效果,在输入好prompt后,在最后增加lora:Moxin_10:0.7 ,生成如下图片:

Prompt: ((shuimobysim, traditional chinese ink painting)), masterpiece, best quality, fullbody, 1girl, dancing, dynamic pose, wearing white techwear jacket, modelshoot style, posing for a picture, long legs, (standing in a chinese garden) lora:Moxin_10:0.7

img

如何训练LoRA模型 - 定制你的专属模型

假设你想将自己形象加入模型中,那你需要首先进行数据收集,将自己的照片作为训练数据,训练新的模型并保存。

数据准备;首先收集图片,可以通过爬虫或者直接从搜索引擎下载,这里我们选择直接从百度图片搜索下载。注意,数据准备的质量决定了你最终模型的效果,如果你喂给模型的图是低质量的图,那么模型给你生成的图也是低质量的图,所以尽量保证图片清晰,分辨率较高,无遮挡。这里我们选择下载蔡徐坤的若干张图片,训练一个人物模型。

img

**训练模型;**这里推荐使用带GUI的工程kohya_ss,适合没有程序经验的读者使用。按照安装说明完成安装后,打开GUI为以下界面,选择Dreambooth LoRA界面。

img

为图片打上标签(caption),输入图片的位置,选择Basic Caption,在Prefix项加上你的关键词,例如我们这里关键词命名为caixukun,可以给图片增加更详细的表述,例如a asian man, star。注意,这个关键词和描述非常重要,在生成图片的时候输入这个关键词,才能生成我们想要的效果。

img

将文件重命名,加上前缀200_,意味着图片要重复200遍,整个训练过程的总steps数为200 * 图片数量

将文件夹重命名为200_caixukun,放置在文件夹下data/lora_train下

img

开始训练,切换到如下页面,输入图像的路径data/lora_train,模型命名,点击开始训练。注意200_caixukun文件夹是lora_train的子文件夹,这里路径不要写错了

img

将训练生成好的模型caixukun.safetensors移动到stable-diffusion-webui/models/Lora文件夹下,输入以下prompt,测试一下效果

caixukun, a aisan man, star, lora:caixukun:1.0

img

img

img

因为这里只随便选用了7张照片,因此效果不算很好,只能说有一点神似。如果要训练一个高质量的模型,建议准备50张以上的图片。

---------------------------------05.12更新----------------------------------------

这次获取了更多图片,又训练了一个画风LoRA模型。训练集包含2000张高质量图片,由小红书@mimilulu 提供,质量非常之高。

img

训练采用V100,总共训练20000步,花费4个小时,以下是由该模型生成的一些图片

img

img

img

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。

二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

1.stable diffusion安装包 (全套教程文末领取哈

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值