一、prompt是什么
在大型语言模型集成中,“prompt” 是指您向模型提供的输入文本或指令,以引导模型生成特定类型的响应。这个 prompt 可以是一个问题、一段描述、一个任务说明,甚至是一部分对话历史记录等。通过设计和优化 prompt,您可以引导模型生成符合预期的回复或完成特定的任务。
在集成大型语言模型时,良好设计的 prompt 可以帮助模型更准确地理解您的意图,并生成更符合预期的结果。因此,对于不同的应用场景和需求,设计合适的 prompt 是非常重要的一步。
二、详细介绍
当使用大型语言模型(如GPT-3)时,“prompt” 是指您向模型提供的输入文本或指令,用于引导模型生成相应的输出。以下是一些关于 prompt 的详细介绍:
- 内容和结构:
内容:prompt 可以是一个问题、一段描述、一项任务要求,甚至是对话历史中的一部分。
结构:prompt 的结构可以简单也可以复杂,取决于您的需求。它可以包含关键词、约束条件、示例输入输出等。 - 作用和功能:
引导模型:prompt 提供了模型开始生成响应的起点,帮助模型理解用户的意图并作出相应的回应。
约束生成:通过在 prompt 中添加约束条件,可以影响模型生成结果的风格、内容和逻辑。
指导输出:合理设计的 prompt 可以指导模型生成用户期望的输出,提高生成文本的质量和相关性。 - 设计提示:
清晰明了:prompt 应该清晰明了,让模型能够准确理解您的需求和期望。
具体明确:避免模糊和含糊不清的表达,尽可能具体和明确地描述您的意图和任务要求。
举例说明:可以通过提供示例输入输出或场景描述来帮助模型更好地理解您的期望结果。 - 优化策略:
迭代优化:根据生成结果进行反馈调整,逐步优化和改进 prompt 的设计。
多样化尝试:尝试不同类型和结构的 prompt,以找到最适合您需求的设计方案。
平衡约束:在添加约束条件时,需要平衡约束的严格性和灵活性,以获得满足需求的最佳输出 - 长度限制:
明确长度:根据您的需求,明确规定生成文本的最大长度,以避免模型输出过长或过短的结果。
截断处理:如果模型生成的文本超过了设定的最大长度,可以采取截断或剪裁的方式进行处理。 - 控制语言风格和内容:
约束关键词:通过在 prompt 中添加特定的关键词或短语,可以引导模型生成符合特定风格或内容的回复。
指定格式要求:如果您期望模型生成特定格式的回复(如列表、段落等),可以在 prompt 中明确指定。 - 示例输入输出:
提供示例:给出一些示例输入和期望的输出,以帮助模型更好地理解您的意图和预期结果。
多样化示例:提供多个示例,覆盖不同情况和变体,以使模型具备更全面的理解能力。 - 渐进式增加信息:
逐步细化:可以从简单到复杂的方式,逐步增加 prompt 中的信息,以确保模型能够逐步理解更详细的上下文和任务要求。
交互式对话:如果是多轮对话场景,可以将对话历史作为 prompt 的一部分,以提供更连贯的对话体验。 - 反馈和迭代:
评估生成结果:对模型生成的文本进行评估,判断是否符合预期,并及时提供反馈。
调整优化:根据生成结果的反馈,不断调整和优化 prompt 的设计,以获得更好的输出效果。
上下文引导:
明确上下文:在 prompt 中提供清晰的上下文信息,确保模型能够准确理解当前对话或任务背景。
指定关联:指定与上下文相关的关键信息或事件,以引导模型生成与特定上下文相关的回复。 - 情境模拟:
描述场景:详细描述所需的情境或场景,让模型能够更好地模拟并生成符合情境的回复。
情感指引:如果期望模型表达特定的情感或态度,可以在 prompt 中明确指引模型相应的情感表达方式。 - 任务指示:
明确定位任务:清晰指示模型需要完成的具体任务,例如回答问题、完成创作、解决问题等。
约束任务范围:通过限定任务的范围和要求,帮助模型更好地理解和执行任务。 - 实时反馈:
动态调整:根据模型生成的回复,实时调整和优化 prompt 的设计,以更好地引导模型生成满足期望的回复。
迭代改进:不断改进和调整 prompt,以逐步提升模型生成结果的质量和相关性。 - 多样化探索:
尝试不同角度:从不同角度设计 prompt,以获得多样化的输出结果。
灵活应对:根据模型生成的不同回复,灵活调整 prompt 的设计,以适应不同情况的需求。 - 关注特定领域:
领域知识引导:如果需要模型基于特定领域知识进行回复,可以在 prompt 中引导模型使用相关的领域知识。
术语和概念:明确定义和引导模型使用特定领域的术语和概念,以确保生成的回复符合领域要求。
多样化数据:
引入多样性:在 prompt 中引导模型涉及不同类型的数据、信息或情境,以促使模型生成更多样化和丰富的回复。
应对变化:考虑到输入数据或情境的多样性,设计 prompt 时要求模型具备应对不同情况的能力。 - 引导解决问题:
问题描述:清晰描述问题或挑战,并引导模型理解并提出解决方案或建议。
启发思考:通过提示和问题引导,激发模型进行深入思考和创造性回复。 - 注意输出质量:
关注可读性:在 prompt 中强调对生成文本的可读性和通顺性等要求,以帮助模型产生更符合语言表达规范的结果。
语义一致:要求模型生成的回复在语义和逻辑上保持一致,避免矛盾或荒谬的回复。 - 特定格式要求:
指定结构:如果需要模型生成特定格式的文本(如报告、说明书等),在 prompt 中明确指定所需的文本结构和排版要求。
样例参考:提供格式示例作为参考,以帮助模型理解并生成符合特定格式要求的文本。 - 灵活反馈机制:
即时评估:针对模型生成的回复,及时给予反馈并指导下一步操作,以实现快速迭代和优化。
动态调整:根据实际情况动态调整 prompt 的设定,以适应不同阶段模型的输出特点和质量。
引导创造性表达:
激发想象:通过描述引人入胜的情境或故事,激发模型的创造性表达能力。
提供灵感:在 prompt 中提供启发性信息或提示,帮助模型产生富有想象力的回复。 - 鼓励对话流畅:
自然对话:设计让模型参与自然对话流程的 prompt,使得模型生成的回复更加流畅和连贯。
交互引导:引导模型参与交互式对话,以促进对话质量和连贯性的提升。 - 细化任务要求:
明确目标:确保 prompt 中包含清晰、具体的任务描述,以指导模型准确理解和完成任务。
细化步骤:如有必要,将任务拆分为多个步骤,以帮助模型逐步完成任务并提高效率。 - 关注逻辑思维:
逻辑推理:引导模型进行逻辑推理和思维,以生成合乎逻辑的回复或解决方案。
因果关系:在 prompt 中明确因果关系或逻辑链条,引导模型基于逻辑思维生成回复。 - 评估结果质量:
质量评估:对模型生成的回复进行及时评估和反馈,以便调整和改进 prompt 的设计。
调整优化:根据评估结果,灵活调整和优化 prompt,以提高模型生成结果的质量和相关性。
情感引导:
情感表达:在 prompt 中引导模型表达特定情感(如喜悦、担忧等),以使生成的回复更具情感色彩和丰富度。
情感理解:通过描述情感相关情境或示例,帮助模型理解并恰当表达情感。 - 实用性导向:
实用建议:引导模型提供实用性强的建议、解决方案或信息,以满足用户需求并增强交互体验。
行动指引:设计 prompt 时提供明确的行动指引,引导模型生成实际可操作的建议或指导。 - 文体风格引导:
文体设置:明确指定期望的文体风格(如正式、幽默、专业等),以帮助模型生成符合要求的文本。
语言风格:通过选择合适的词汇、句式和语气,引导模型表达与所需文体风格相匹配的回复。 - 专业领域引导:
领域背景:提供相关领域的背景信息或特定要求,以帮助模型生成针对性的回复。
专业术语:如涉及专业领域,明确指定使用特定的专业术语或知识点,以确保模型生成的回复准确和专业。 - 反馈机制:
学习优化:根据模型生成的回复和用户反馈,不断学习和优化 prompt 的设计,以提高模型生成结果的质量和相关性。
持续改进:持续跟踪模型表现,并根据实际情况调整和改进 prompt,以不断提升与模型的交互效果。
适当的信息量:
信息清晰度:确保 prompt 中包含足够清晰、详尽但不过多的信息,以帮助模型准确理解任务及需求。
重点突出:在 prompt 中突出任务的关键信息和要求,避免信息过载或模糊不清。 - 情境设定:
背景描述:为模型提供相关的情境背景,以帮助模型更好地理解任务,并生成更贴合情境的回复。
场景引导:通过描述特定场景或环境,引导模型产生更具针对性的回复。 - 问题引导:
明确问题:如果任务涉及解决问题或回答特定问题,确保 prompt 中明确提出问题,以引导模型产生相应回复。
问题分类:如有多个问题,可对问题进行分类或编号,以帮助模型有序生成回复。 - 多样性引导:
多样化需求:在 prompt 中引导模型生成多样化的回复,以满足不同用户的需求和偏好。
选项设置:如果需要选择或比较不同选项,可在 prompt 中提供相关选项,以引导模型生成相应回复。 - 实时反馈:
即时调整:根据模型生成的回复和用户反馈,灵活调整和优化 prompt 的设计,以提高模型生成结果的质量和相关性。
动态改进:持续跟踪模型表现并根据实际情况动态调整 prompt,以不断改进与模型的交互效果。
上下文引导:
提供上下文:在 prompt 中提供前文或背景信息,以帮助模型理解上下文,并生成与之相关的回复。
引用关键词:使用关键词或短语引用先前的对话或内容,以引导模型建立联系并生成连贯的回复。 - 明确约束:
限制长度:设定最大回复长度,以确保模型生成简洁、准确的回复,并防止回复过长。
避免无关回答:在 prompt 中明确指定问题或需求,避免模型生成与任务无关的回答。 - 追问引导:
提出相关问题:在 prompt 中提出细分或相关的问题,引导模型生成更具深度和针对性的回复。
鼓励解释:通过引导模型解释其回答的原因、依据或思路,促使模型生成更有逻辑和可解释性的回答。 - 多轮对话引导:
对话历史:将对话历史作为一部分的 prompt,帮助模型理解上下文并生成连贯的回复。
指定角色:在 prompt 中明确指定不同角色或对话参与者,以引导模型生成相应的回应。 - 用户利益导向:
关注用户需求:设计 prompt 时聚焦于用户的需求、问题和兴趣,以引导模型生成与用户利益相关的回复。
增加个性化:在 prompt 中加入用户个性化信息,如名字或喜好,以提高模型生成回复的个性化程度。
情感引导:
情感表达:通过在 prompt 中加入情感色彩或情感指示词,引导模型生成带有特定情感色彩的回复。
情景设定:描述特定情感场景或情境,以帮助模型更好地把握回复的情感语调。 - 知识引导:
引导知识:在 prompt 中提供相关知识点或信息,引导模型基于知识性回答问题或进行讨论。
鼓励创意:通过启发创造力或提出开放性问题,激发模型生成更具创意性的回复。 - 行动指引:
动作词语:使用具体的动作动词或指令,引导模型生成涉及行动或操作的回复。
步骤说明:如果涉及到步骤或流程,逐步指导模型完成相关任务或回答问题。 - 反馈引导:
明确反馈:在 prompt 中明确表达对模型回复的期望或评估标准,以引导模型生成符合预期的回答。
改进建议:在反馈中提供具体建议或指导,帮助模型不断改进回复质量。 - 语言风格引导:
语言偏好:指定特定的语言风格、口吻或表达方式,引导模型生成符合要求的语言风格。
语气调整:根据需要,调整 prompt 的语气和态度,以引导模型生成相应的回复。
场景设定:
设定背景:描述特定的场景或情境,帮助模型理解对话背景并生成相关联的回复。
引导角色:指定特定的角色或身份,以促使模型针对该角色生成相应的回答。 - 故事引导:
开始故事:启动一个故事开端,引导模型继续故事情节或发展剧情。
设定结局:提供故事情节或发展方向,引导模型朝着设定的结局或发展方向生成回复。 - 对比引导:
提供对比:在 prompt 中提供对比性信息或要求进行对比,引导模型生成对比分析或相关回答。
强调差异:明确指出不同之处,引导模型根据对比生成详细、准确的回复。 - 评价引导:
征求评价:要求模型对特定内容或主题进行评价,引导模型表达态度或观点。
解释原因:引导模型解释评价的原因或依据,增加回答的合理性和可解释性。 - 行为反馈引导:
指定行为:要求模型描述特定行为或举止,引导模型生成相关行为的描述或评价。
情境说明:提供特定情境或背景,引导模型基于情境生成相关行为的回答。
通过灵活运用上述策略和技巧,您将能够更有针对性地设计 prompt,有效引导模型生成符合预期的回复。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
