目录
一、前言
Prompt-tuning
通过修改输入文本的提示(Prompt
)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。
Prompt-Tuning
高效微调只会训练新增的Prompt的表示层,模型的其余参数全部固定,其核心在于将下游任务转化为预训练任务
新增的 Prompt
内容可以分为 Hard Prompt
和 Soft Prompt
两类:
Soft prompt
通常指的是一种较为宽泛或模糊的提示,允许模型在生成结果时有更大的自由度,通常用于启发模型进行创造性的生成;Hard prompt
是一种更为具体和明确的提示,要求模型按照给定的信息生成精确的结果,通常用于需要模型提供准确答案的任务;
Soft Prompt 在 peft 中一般是随机初始化prompt的文本内容,而 Hard prompt 则一般需要设置具体的提示文本内容;
对于不同任务的Prompt
的构建示例如下:
例如,假设我们有兴趣将英语句子翻译成德语。我们可以通过各种不同的方式询问模型,如下图所示。
1)“Translate the English sentence ‘{english_sentence}’ into German: {german_translation}”
2)“English: ‘{english sentence}’ | German: {german translation}”
3)“From English to German:‘{english_sentence}’-> {german_translation}”
上面说明的这个概念被称为硬提示调整
软提示调整(soft prompt tuning)将输入标记的嵌入与可训练张量连接起来,该张量可以通过反向传播进行优化,以提高目标任务的建模性能。
例如下方伪代码:
# 定义可训练的软提示参数
# 假设我们有 num_tokens 个软提示 token,每个 token 的维度为 embed_dim
soft_prompt = torch.nn.Parameter(
torch.rand(num_tokens, embed_dim) # 随机初始化软提示向量
)
# 定义一个函数,用于将软提示与原始输入拼接
def input_with_softprompt(x, soft_prompt):
# 假设 x 的维度为 (batch_size, seq_len, embed_dim)
# soft_prompt 的维度为 (num_tokens, embed_dim)
# 将 soft_prompt 在序列维度上与 x 拼接
# 拼接后的张量维度为 (batch_size, num_tokens + seq_len, embed_dim)
x = concatenate([soft_prompt, x], dim=seq_len)
return x
# 将包含软提示的输入传入模型
output = model(input_with_softprompt(x, soft_prompt))
- 软提示参数:
使用 torch.nn.Parameter
将随机初始化的向量注册为可训练参数。这意味着在训练过程中,soft_prompt
中的参数会随梯度更新而优化。
- 拼接输入:
函数 input_with_softprompt
接收原始输入 x
(通常是嵌入后的 token
序列)和 soft_prompt
张量。通过 concatenate
(伪代码中使用此函数代指张量拼接操作),将软提示向量沿着序列长度维度与输入拼接在一起。
- 传递给模型:
将包含软提示的输入张量传给模型,以引导模型在执行特定任务(如分类、生成、QA 等)时更好地利用这些可训练的软提示向量。
二、Prompt-tuning实战
预训练模型与分词模型——Qwen/Qwen2.5-0.5B-Instruct
数据集——lyuricky/alpaca_data_zh_51k
2.1、下载模型到本地
# 下载数据集
dataset_file = load_dataset("lyuricky/alpaca_data_zh_51k", split="train", cache_dir="./data/alpaca_data")
ds = load_dataset("./data/alpaca_data", split="train")
# 下载分词模型
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
# Save the tokenizer to a local directory
tokenizer.save_pretrained("./local_tokenizer_model")
#下载与训练模型
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="Qwen/Qwen2.5-0.5B-Instruct", # 下载模型的路径
torch_dtype="auto",
low_cpu_mem_usage=True,
cache_dir="./local_model_cache" # 指定本地缓存目录
)
2.2、加载模型与数据集
#加载分词模型
tokenizer_model = AutoTokenizer.from_pretrained("../local_tokenizer_model")
# 加载数据集
ds = load_dataset("../data/alpaca_data", split="train[:10%]")
# 记载模型
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="../local_llm_model/models--Qwen--Qwen2.5-0.5B-Instruct/snapshots/7a