AI生成视频太贵?不存在的,Stable Video Diffusion懒人包来了

近期,AI生成视频领域可谓诸神混战,Runway、Pika等AI视频生成工具打得不亦乐乎。可惜,这几家都是闭源的,要使用一般都需要开个会员。会员好用是好用,可惜都有一个重要的问题——太TM贵了。不过也好解决,有钱就行了。可是,挣钱不容易啊~

img

前段时间,给大家介绍过的由Stable AI出品的视频生成开源模型Stable Video Diffusion,可谓又一次改变了游戏规则。既然是开源的,那就意味着可以本地自己部署,今天就给大家分享一款Stable Video Diffusion离线懒人包,快随我去看看吧~

Stable Video Diffusion简介

Stable Video Diffusion(以下简称SVD)是一个可接收用户输入的自然语言指令,生成视频的AI模型,是第一个以Stable Diffusion模型作为基础的视频生成模型

动图封面

SVD视频模型可以轻松适应各种下游任务,包括通过对多视图数据集进行微调从单个图像进行多视图合成,而且官方正在计划建立和扩展这个基础的各种模型,类似于围绕稳定扩散建立的生态系统。

以下是由SVD生成了一个豪车视频,效果看起来还不错呢!

动图封面

离线懒人包来了

老规矩,大家自行在本地部署比较麻烦,已经为大家制作好了一款离线整合包了,私信回复【SVD】,下载到本地解压即用。大家记得点点关注不迷路哦,后续还有更多酷炫的AI项目分享~

img

将懒人包解压到本地。

①双击“一键启动-SVD.exe”。

②双击一键启动程序后,会打开一个命令提示窗口,项目会自动运行。加载成功后,会自动打开一个网页,如果没有自动打开,请自行复制以下网址在浏览器打开“ http://127.0.0.1:7860/”。

img

③打开链接后,可以看到项目主界面

img

使用也非常简单,跟AI绘画使用方法非常类似:

  1. 上传图片:

img

2.点击“run”按钮,等待处理即可

img

以下是我自己亲测的由SVD生成的视频,看起来效果还是蛮不错的:

动图封面

该项目还有一些高级选项,感兴趣的朋友,快去试试吧~

注意事项:

①该项目需要英伟达显卡运行,建议至少10G显存以上(作为参考,我自己的4070Ti显卡12G显存,生成上述视频,拉满跑了20多分钟)

②请确保安装路径不包含中文,不然可能会引起奇怪的适配问题

③免费在线体验:没有显卡也没关系,点击以下Google colab链接,无需显卡但需要魔法;打开链接后,点击「代码执行程序」-「全部运行」,等加载成功后,即可在线体验:

https://colab.research.google.com/github/mkshing/notebooks/blob/main/stable_video_diffusion_img2vid.ipynbcolab.research.google.com/github/mkshing/notebooks/blob/main/stable_video_diffusion_img2vid.ipynb

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

在这里插入图片描述

### Stable Video Diffusion Model for Frame Interpolation Stable Video Diffusion (SVD) models represent a significant advancement in the field of video processing and generation by leveraging latent diffusion techniques scaled to handle large datasets effectively[^1]. These models are designed not only for generating high-quality videos but also for specific tasks such as frame interpolation. #### Principles Behind SVD Models The core principle behind these models lies within their ability to scale latent diffusion processes efficiently when dealing with extensive data collections. This scalability is crucial because it allows for more complex patterns and movements found in video content to be learned accurately without compromising on performance or quality[^2]. For **frame interpolation**, which involves predicting intermediate frames between two given keyframes, stable video diffusion models utilize advanced algorithms that can understand temporal dynamics better than traditional methods. By doing so, they ensure smoother transitions while maintaining visual consistency throughout the generated sequences. In terms of implementation details related specifically to this task: - The forward diffusion process adds noise gradually over time steps until an image becomes entirely random; conversely, during inference, the reverse denoising procedure reconstructs meaningful images from pure noise. - For effective frame prediction, especially concerning motion estimation across multiple frames, sophisticated architectures incorporating attention mechanisms may play vital roles alongside standard convolutional layers used widely today[^3]. Additionally, certain implementations might benefit from optimizations like using specialized libraries (`xformers`) available through Python package managers under specified versions compatible with target operating systems—such as Windows—for enhanced computational efficiency[^4]. ```python pip install xformers==0.0.16rc425 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` This command installs `xformers`, potentially improving training speed and resource management depending upon system configuration and requirements.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值