LTX Video:Lightricks推出的开源AI视频生成模型

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

生成速度:LTX Video能在4秒内生成5秒的高质量视频,速度超过观看速度。
技术架构:基于2亿参数的DiT架构,确保帧间平滑运动和结构一致性。
应用场景:适用于视频制作、广告制作、游戏开发、在线视频平台和电影电视制作。

正文(附运行示例)

LTX Video 是什么

公众号: 蚝油菜花 - LTX-Video

LTX Video是由Lightricks推出的开源AI视频生成模型,能够在4秒内生成5秒的高质量视频。该模型基于2亿参数的DiT架构,确保帧间平滑运动和结构一致性,解决了早期视频生成模型的关键限制。

LTX Video支持长视频制作,提供灵活性和控制力,适用于多种场景,包括游戏图形升级和电子商务广告变体制作。

LTX Video 的主要功能

  • 实时视频生成:LTX Video能快速生成视频内容,速度可实现实时视频生成,对于需要即时反馈的应用场景非常有用。
  • 高质量视频输出:模型能生成高分辨率和高帧率的视频,确保视频内容的清晰度和流畅度。
  • 运动一致性:LTX Video特别强调视频帧之间的运动一致性,减少了物体变形和运动不连贯的问题,视频看起来更加自然。
  • 开源和可扩展性:作为一个开源模型,LTX Video支持开发者和研究者自由地访问和修改代码,适应不同的应用需求,可以扩展到更长的视频内容生成。
  • 优化的硬件兼容性:LTX Video针对广泛使用的GPU进行了优化,能在多种硬件上高效运行,特别是NVIDIA RTX系列显卡。
  • 易于集成:LTX Video提供了与ComfyUI的原生支持,用户可以直接在ComfyUI Manager中使用LTX Video的功能。
  • 广泛的应用场景:从游戏图形升级到电子商务广告变体制作,LTX Video的应用场景广泛,能满足不同行业的需求。

LTX Video 的技术原理

  • 文本编码器(Text Encoder):LTX Video使用文本编码器将输入的文本描述转换为高维的语义向量表示,这些向量用于指导视频生成过程。
  • DiT(Diffusion Transformer)模型:LTX Video基于DiT架构生成每一帧或多帧视频的潜在表示。DiT结合了扩散模型和Transformer架构的优势,通过模拟从噪声到数据的扩散过程,能生成高质量、逼真的视频内容。
  • 3D VAE(Variational Autoencoder):LTX Video通过3D VAE解码整个视频的潜在表示,生成时空一致的视频帧序列。3D VAE通过3D卷积网络处理视频数据,增强模型对视频时空信息的处理能力。
  • 时序注意力(Temporal Attention):LTX Video通过多头自注意力机制增强视频帧之间的连贯性,确保视频的流畅性和时序一致性。
  • 扩散过程:LTX Video的训练使用引入了噪声的特征向量作为输入,模型的目标是学习如何逆转噪声增加的过程,即从噪声数据恢复出原始数据。
  • 视频生成:在模型训练完成后,可以通过输入噪声数据(或随机生成的噪声)到模型中,经过模型的处理后生成新的图像或视频。

如何运行 LTX Video

安装

git clone https://github.com/Lightricks/LTX-Video.git
cd LTX-Video

# 创建环境
python -m venv env
source env/bin/activate
python -m pip install -e .\[inference-script\]

下载模型

from huggingface_hub import snapshot_download

model_path = 'PATH'   # 本地保存模型的目录
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model')

推理

文本到视频生成
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED
图像到视频生成
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值