[ComfyUI]YuE:一键生成完整歌曲!开源类Suno的AI音乐创作新神器

YuE 简介

今天文章将介绍一款由香港科技大学发布的最新的AI 音乐生成神器YuE。这是一系列用于歌词到歌曲的开源基础语言模型,专门用于将歌词转化为完整歌曲(lyrics2song),并将其纳入 LLaMA 家族。YuE 不仅能够生成几分钟的完整歌曲(可长达 5 分钟的音乐音频),还能根据歌词生成吸引人的主唱和伴奏,确保歌曲整体和谐且完整,贯穿整首歌曲遵循歌词条件,保持连贯的音乐结构,生成吸引人的主唱旋律和合适的伴奏。。它支持多种音乐风格和演唱风格,无论是流行还是金属,都能轻松应对。同时支持多种语言,包括中文、英文、日文、韩文等。

YuE音乐生成ComfyUI 体验

社区已有插件 ComfyUI_YuE 支持该模型的 ComfyUI 体验,仅需通过插件管理器安装插件即可。模型可文末获取

  • ComfyUI_YuE插件:https://github.com/smthemex/ComfyUI_YuE
  • 依赖安装:需要安装pip install flash-attn --no-build-isolation。,也可以安装triton加速。如果后续使用量化显存优化mmgp:则需要安装 pip install mmgp , 使用了exllamav2:同样需要安装pip install exllamav2。或者使用源码编译方式:
git clone https://github.com/turboderp/exllamav2
cd exllamav2
pip install -r requirements.txt
pip install .
  • YuE 模型:下载模型并放置 ComfyUI/models/yue 目录下。地址:https://huggingface.co/m-a-p/xcodec_mini_infer/tree/main/final_ckpt,https://huggingface.co/m-a-p/YuE-upsampler/tree/main
--   ComfyUI/models/yue
    ├── ckpt_00360000.pth
    ├── decoder_131000.pth
    ├── decoder_151000.pth
  • xcodec_mini_infer:下载模型并放置 ComfyUI/custom_nodes/ComfyUI_YuE/inference/xcodec_mini_infer/semantic_ckpts/hf_1_325000/ 目录下。地址:https://huggingface.co/m-a-p/xcodec_mini_infer/tree/main/semantic_ckpts/hf_1_325000
--   ComfyUI/custom_nodes/ComfyUI_YuE/inference/xcodec_mini_infer/semantic_ckpts/hf_1_325000/
    ├── pytorch_model.bin
  • YuE-s1-7B-anneal-en-icl:可下载放置任意位置,在节点配置。本文建议放置ComfyUI/models/yue 目录下。英文:YuE-s1-7B-anneal-en-cot或者YuE-s1-7B-anneal-en-icl 或者中文YuE-s1-7B-anneal-zh-cot。目录格式如下:
--   anypath/YuE-s1-7B-anneal-en-icl   # 11.5G
    ├── config.json
    ├── generation_config.json
    ├── model.safetensors.index.json
    ├── tokenizer.model
    ├── model-00001-of-00003.safetensors
    ├── model-00002-of-00003.safetensors
    ├── model-00003-of-00003.safetensors
  • • *YuE-s2-1B-general **:可下载放置任意位置,在节点配置。本文建议放置*ComfyUI/models/yue 目录下。地址:https://huggingface.co/m-a-p/YuE-s2-1B-general/tree/main
--   anypath/YuE-s2-1B-general  #  3.65G
    ├── config.json
    ├── generation_config.json
    ├── model.safetensors
    ├── tokenizer.model
  • • 另外小于16G显存还可以多种量化模型可用: int8 or int4,exllamav2,deepbeepmeep ,详情参见:https://github.com/smthemex/ComfyUI_YuE?tab=readme-ov-file#3models
  • • 本插件依赖模型特别复杂,更多参见插件主页。建议直接文末网盘下载,已放置好模型位置。

img

img

img

YuE音乐生成ComfyUI 工作流体验

YuE 音乐生成 ComfyUI 工作流已上传LIBLIBAI平台可体验:https://www.liblib.art/modelinfo/f7b9627334d84a638ee9e62a39cd6515?versionUuid=23d440061ce0447abe5641826cb58a5e

img

推荐量化配置
  • • 这里包含多种量化方式适应于不同GPU显存配置,核心选项为fp16/int8,use_mmgp和exllamav2参数选择。请根据自己显存调节合适参数。下面展示位插件作者推荐的一些参数配置。更多细节参见:https://github.com/smthemex/ComfyUI_YuE/tree/main?tab=readme-ov-file#4use-tips

    • 显存大于24G,用原生的repo,quantization_model选fp16,关闭use_mmgp,prompt_end_time就是渲染时长先设置为30秒测试(普通玩家的最佳效果)

  • • 显存小于等于16G,用原生的repo,quantization_model选fp16,开启use_mmgp,prompt_end_time就是渲染时长先设置为30秒测试(效果好,但是慢,需要大内存)

  • • 显存小于等于16G,用int8的repo,'quantization_model’选int8,关闭use_mmgp,prompt_end_time就是渲染时长先设置为30秒测试(效果还行,速度奇慢6716s,不要尝试)

  • • 显存小于等于16G,用exllamav2的Q8 repo,'quantization_model’选exllamav2,关闭use_mmgp,exllamav2_cache_mode选择Q8,prompt_end_time就是渲染时长先设置为30秒测试(效果一般,速度非常快)

注意:
  • • 提示词工程指南:歌曲提示词应该由三部分组成:风格标签歌词参考音频。同时,一个稳定的风格标签提示词通常包含五个部分:风格乐器情绪性别音色。如果可能的话,这五个部分都应该包含,用空格分隔(空格分隔符)。歌词提示词应分为多个部分,并在每个部分前添加结构标签(例如,[verse]、[chorus]、[bridge]、[outro])。每个部分之间用两个换行符“\n\n”分隔。但是不能在单个段落中放入太多文字,因为每个部分大约持续30 秒(默认值为 --max_new_tokens 3000)。另外 ,[intro] 标签的稳定性较差,因此建议从 *[verse] 或 * [chorus] 开始。
  • • 更详细的歌词和提示词书写参考官方指南:https://github.com/multimodal-art-projection/YuE?tab=readme-ov-file#prompt-engineering-guide 。 同时也可以查看top 200标签来撰写歌词提示:https://github.com/smthemex/ComfyUI_YuE/blob/main/top_200_tags.json
  • • 整体生成速度较慢,但不同GPU具有多种量化方式可用。

img

img
为了帮助大家更好地掌握 ComfyUI,我花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

img

在这里插入图片描述

### 关于 YuEComfyUI 的使用教程 #### 什么是 ComfyUIComfyUI 是一款基于 Stable Diffusion 的图形化界面工具,允许用户通过拖拽节点的方式构建复杂的工作流。它提供了高度灵活的功能设计,能够满足从初学者到高级用户的多样化需求[^1]。 #### 如何获取 ComfyUI 基础教程? 一套完整ComfyUI 教程已被开发出来,涵盖了从入门到精通的内容。该系列共有六篇文章,分别讲解了以下几个方面: - **选择理由**:为什么应该学习和使用 ComfyUI。 - **优缺点分析**:全面评估这款软件的优势与不足之处。 - **安装指南**:如何下载并配置 ComfyUI 运行环境。 - **模型与插件管理**:详细介绍各种模型和插件的安装流程。 - **工作流解析**:深入探讨节点功能及其背后的运行机制。 - **特定模块教学**:例如遮罩修改重绘(Inpainting)以及 SDXL 工作流的实际操作案例。 对于希望快速上手的朋友来说,可以尝试按照官方文档或者社区分享的经验来进行设置。如果需要扩展更多自定义特性,则可以通过第三方资源库完成进一步定制。比如有这样一个项目专门针对某些增强型组件进行了封装——只需执行如下命令即可将其集成至现有环境中: ```bash cd ComfyUI/custom_nodes git clone https://github.com/CY-CHENYUE/ComfyUI-Janus-Pro ``` 上述脚本会自动拉取最版本并将文件放置在指定目录下以便后续调用[^2]。 #### 插件的具体应用实例 以 `ComfyUI-Manager` 为例说明标准流程中的每一步骤是如何实现的。假设当前使用的并非预打包好的发行版而是纯净原始状态下的框架结构时,那么就需要手动添加必要的依赖项才能正常使用全部特性[^3]。 另外值得注意的是,在实际创作过程中合理利用现成模板往往能事半功倍。例如借助他人贡献出来的高质量预制方案(如 FLUX.1-dev-gguf),即使硬件条件有限也能获得不错的效果展示机会[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值