基于歌词生成整首歌的开源AI音乐模型,支持中、英、日、韩等多种语言,本地化部署YuE(windows篇)

本文已首发于 秋码记录
微信公众号:你我杂志刊
在这里插入图片描述

如果你也想搭建一个与秋码记录一样的网站,可以浏览我的这篇 国内 gitee.com Pages 下线了,致使众多站长纷纷改用 github、gitlab Pages 托管平台

秋码记录网站使用的主题是开源的,目前只在github.com开源。
hugo-theme-kiwi开源地址:https://github.com/zhenqicai/hugo-theme-kiwi

说起文生音乐,我们自然会想到suno.ai这个音乐生成式平台,它算是目前市面上音乐生成式比较好的AI项目,虽然它是闭源的。

然而,一款由Multimodal Art Projection(M-A-P)(多模态艺术投影)团队与香港科技大学(HKUST)联合研发的YuE开源了,它是根据歌词生成整首歌的开源AI音乐模型。

YuE的开源,着实在开发者社区掀起了一阵热潮,但也给了AI浪潮中的文生音乐助推了不小波澜。

YuE 是一系列开创性的开源基础模型,专为音乐生成而设计,专门用于将歌词转换成完整的歌曲(lyrics2song)。它可以生成一首完整的歌曲,持续几分钟,包括朗朗上口的声乐曲目和伴奏曲目。YuE 能够模拟多种流派/语言/声乐技巧。请访问演示页面,了解令人惊叹的声乐表演。

概述

YuE项目地址:https://github.com/multimodal-art-projection/YuE

按照官方描述:

YuE 需要大量 GPU 来生成长序列。以下是推荐的配置:

对于具有 24GB 或更少的 GPU:运行最多 2 个会话以避免内存不足 (OOM) 错误。

对于完整的歌曲生成(许多会话,例如 4 个或更多):使用具有至少 80GBGPU。即 H800A100 或具有张量并行的多个 RTX4090

要自定义会话数,界面允许您指定所需的会话数。默认情况下,模型运行 2 个会话(1 节 + 1 合唱)以避免 OOM 问题。

H800 GPU 上,生成 30 秒的音频需要 150 秒。在 RTX 4090 GPU 上,生成 30 秒的音频大约需要 360 秒。

社区提供了对于 GPU 资源有限的人,有 YuE-exllamav2YuEGP。虽然两者都提高了生成速度和连贯性,但它们可能会损害音乐性。

YuEGP github地址:https://github.com/deepbeepmeep/YuEGP

YuE-exllamav2 github地址: https://github.com/sgsdxzy/YuE-exllamav2

本地部署 YuEGP

我先在本地部署社区提供的低显存占用的YuEGP

clone 推理代码

我们我先把推理代码clone下来。

git lfs install
git clone https://github.com/deepbeepmeep/YuEGP/

cd YuEGP/inference/
git clone https://huggingface.co/m-a-p/xcodec_mini_infer

在这里插入图片描述

创建虚拟环境

随后,我们使用python3自带的venv来创建虚拟环境,当然咯,你也是可以使用anacondaminiconda来搭建python虚拟环境。

python -m venv YuEGP-env
cd YuEGP-env/Scripts
activate
安装GPU版的torch

设置清华源镜像

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

安装CUDA对应版本的torch

pip install torch==2.5.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124
安装 FlashAttention 2

虽然官方说这个是可选的,但是你不安装这个,是运行不起来的,因为代码中有使用了flashAttention2

在安装flashAttention2之前,你得保证你安装的CUDA版本是在12.4以上。

阿里云开源的文生视频万相 Wan2.1之本地部署Wan2.1-T2V-1.3B模型 中有介绍该如何在windows中安装,如果你是第一次安装的话,可以参考这篇文章,这里就不再赘述了。

安装项目所需的依赖
pip install -r requirements.txt

在这里插入图片描述

下载模型

国内可访问的https://hf-mirror.com/collections/m-a-p/yue-6797d55e22990ae89b90a3d6

在这里插入图片描述

下载的模型存放于inference/m-a-p目录。

在这里插入图片描述

运行项目

cd inference
python gradio_server.py

在这里插入图片描述

打开你常用的浏览器,在地址栏输入127.0.0.1:7860.

在这里插入图片描述

可以调整参数来加速生成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄齐才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值