Stable Diffusion 作为一款强大的 AI 图像生成模型,具有诸多显著特点。
首先,它开源免费,这意味着任何人都可以自由使用和修改,为艺术创作、设计等领域的从业者和爱好者提供了极大的便利。用户无需支付费用,就能享受到高质量的图像生成服务,极大地降低了创作成本。
在控制力方面,Stable Diffusion 表现出色。它支持更加详细的 Prompt 设计,用户可以输入更长的文本描述,如人物特征、动作、环境等信息,从而实现对生成图像的精细控制。此外,它还提供了人物动作和姿态的插件库,方便用户调整和控制人物的具体动作、姿态,如手势、眼神等。同时,它可以输入图像作为条件,按照这个图片中的人物姿态和动作生成新的图片,实现人物动作的迁移和重新组合。
在安全性方面,由于 Stable Diffusion 是在本机上生成的,所有绘图过程在本地完成,保护了用户数据的隐私和安全。而且,它可以生成一些不可描述的图片,对于艺术工作者来说非常重要。
在速度方面,英伟达新发布的 RTX Workstation 支持最多 4 张 RTX 6000 GPU,使得 Stable Diffusion XL 每分钟生成 40 张图片,比 4090 快 5 倍。同时,新的生成模型 LCM 可以通过少量步骤推理合成高分辨率图像,使图像生成速度提升 2 - 5 倍。例如,在 ComfyUI 中使用 lcm-lora-sdv1 - 5,经测试生成 4 张图像仅需 3 秒。而使用 Animatediff 与 LCM - LoRA 后,生成一个 16 帧的动图只需要 27 秒,如果不使用则需要 75 秒,速度差了 3 倍。
二、在建筑方案设计中的应用
(一)辅助建筑立面设计
Stable Diffusion 中的 ControlNet 在辅助建筑立面设计方面表现出色。首先,了解 SD 的特性,它可以在精准控制下保证 AI 的创作性出图,结合建筑设计流程,应用在建筑体块确定后的立面创作。具体步骤如下:一是草模创建,使用 SketchUp 等软件创建项目草模,并选择透视角度导出图片或采用手绘建筑体块扫描成电子文件;二是使用 Stable Diffusion 中的 ControlNet 进行线稿和深度控制,确保体量控制的前提下使用 AI 进行立面创作;三是对满意的设计进行高清修复出图,完成最终的立面设计图。例如,体块生成立面效果(鸟瞰)和低点效果都十分显著,线稿生成立面效果无论是设计师自己的线稿还是对萨伏伊别墅进行重新生成,都能产生不同的立面效果。通过不同的 lora 模型进行尝试,可以在建筑体量确定的情况下,为不同立面方案的推敲提供有力支持,后续立面深化仍需结合平面统一考虑。
(二)生成建筑方案
-
以文生图:生成建筑方案的基本逻辑和 MJ 一样,是根据提示词 prompt 进行生成。SD 需要反向提示词,prompt 一般包含建筑主体风格、材质、周边环境、视角、效果图公司风格、某个大师设计等,越详细越好,也可借助 ChatGPT 编写。比如,建筑主体风格可以是现代简约、欧式古典等;材质可以是砖石、玻璃等;周边环境可以是有公园、河流等;视角可以是俯瞰、仰视等。通过调整迭代步数、采样方法、宽度高度、提示词引导系数等参数,可以生成不同效果。迭代步数并非越高越好,需要多家调试,数值越高画面细节可能越多,但也可能导致效果不佳。采样方法多样,可根据需求选择,如一般习惯用 DDIM,速度较快。宽度高度控制图像分辨率,根据需求调整。提示词引导系数数值越大,和想要的效果越相关,但不绝对,需要自己调试。如果要出高清图,点击高分辨率修复,并调大图片的宽度高度。旁边的参数还可以设置出图批次,如想一次性生成 32 张图,可以设置 8 批次,单批四张图,几秒就能生成 32 种建筑方案。
-
结合 lora 以文生图:加载 lora 可以让图纸更加有细节,生成高质量的建筑方案。首先去 C 站下载 lora,找到想要的图纸风格进行下载。安装方法和加载大模型一样,回到启动器,点击 lora 模型,加载下载好的 lora 模型,点击刷新就会出现下载的 lora 模型,点击 lora 模型,相关的提示词就会出现在正向提示词中,然后生成图纸。如果对结果满意,可以点击图标,后面生成图纸就会跟想要的结果比较相关,继续深化。
-
ControlNet 精准控制图纸:ControlNet 插件是 SD 被称为最强建筑 AI 软件的原因之一。它可以完美地根据草图或者 SU 模型进行控制生成图纸,完全可以当渲染图或者生成方案使用。找到一张手绘图纸,打开 ControlNet 插件,点击上传导入手绘图。如果 controlnet 模型选项是无,是因为没有把安装包内的 con 模型放到对应的位置。点击预览,可以看到识别的结果基本上能将形体控制住,但需要多调整参数,多次生成才能达到想要的效果。目前 ControlNet 已经更新到 1.1 版本,新增了更多的预处理器和模型,每种模型对应不同的采集方式和应用场景。例如,线稿上色方法通过 ControlNet 边缘检测模型或线稿模型提取线稿,再根据提示词和风格模型对图像进行着色和风格化,应用模型有 Canny、SoftEdge、Lineart;涂鸦成图方法通过 ControlNet 的 Scribble 模型提取涂鸦图,再根据提示词和风格模型对图像进行着色和风格化,Scribble 的预处理器有三种模式,处理细节更为丰富;建筑 / 室内设计方法通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框,再配合提示词和建筑 / 室内设计风格模型来生成图像。
(三)在建筑前期方案中的应用
建筑表现公司与设计院合作,利用 Stable Diffusion 进行前期方案推敲。在设计过程中,设计院通常会利用 3D 建模软件生成规划布局和建筑关系的体块模型,然后将模型交给建筑表现公司。利用 stable diffusion 技术,双方一起分析研究建筑的立面风格、建筑材料的选择和优化。最后建筑表现公司根据确定的信息编写合适的提示词,通过提示词生成不同风格的前期方案。例如,济南雅色数字科技公司星朗工作室和山东华科规划建筑设计有限公司合作,将方案体块模型图导入 ControlNet,进行形体约束,再通过不同迭代,生成了多个前期方案,如迭代次数 40、100、130、150 的方案成果图。使用 stable diffusion 技术虽然需要投入一些成本,但从长远来看,能够提高工作效率和渲染质量,帮助更好地满足客户需求,同时还可以提高设计效率,避免出现不必要的误差和修改,对设计的进度和成本都非常有益。不过在使用过程中也会遇到一些困难和挑战,比如需要一定的技术储备和经验来正确地配置和使用 stable diffusion 技术,还需要不断地学习和掌握新技术,而且 stable diffusion 技术也需要比较高的计算机性能来支持,这可能会带来一些成本和设备升级的挑战。但总体来说,未来建筑行业会越来越注重数字化技术的应用,stable diffusion 技术的应用将会越来越广泛,带来更高效、更精准的建筑表现和设计。
三、优势与影响
(一)优势
- 快速生成多样化草图,丰富灵感库,加速设计迭代。
Stable Diffusion 能够在短时间内根据文本描述生成多样化的建筑设计草图。据统计,在实际应用中,设计师使用 Stable Diffusion 平均每小时可以生成数十种不同的草图方案,极大地丰富了设计初期的灵感库。例如,在一个大型商业综合体的建筑设计项目中,设计师通过 Stable Diffusion 在短短一天内就生成了上百种不同的设计草图,为后续的方案优化提供了丰富的选择。这种快速生成草图的能力,大大加速了设计迭代过程,使设计师能够在更短的时间内探索更多的设计可能性。
- 基于设计师想法生成多种方案,反映审美偏好和风格特点。
当设计师输入初步想法后,Stable Diffusion 可以快速生成多种设计方案。这些方案不仅形态各异,还能在一定程度上反映出设计师的审美偏好和风格特点。例如,一位擅长现代简约风格的设计师输入了一个关于住宅项目的初步想法,Stable Diffusion 生成的方案中大部分都呈现出现代简约的风格特点,如简洁的线条、大面积的玻璃运用等。这样一来,设计师可以从海量的方案中挑选出最具潜力的几个进行深入研究和优化,从而大大缩短了设计周期,提高了设计效率。据相关数据显示,使用 Stable Diffusion 后,建筑设计项目的平均设计周期缩短了约 30%。
- 卓越的细节处理能力,精准捕捉光影和材质质感。
Stable Diffusion 以其卓越的细节处理能力,让建筑设计中的每一砖一瓦都充满了生命的韵律。它不仅能精准捕捉光与影的微妙变化,更能细腻描绘材质的质感与色彩的层次。在实际应用中,通过 Stable Diffusion 生成的建筑效果图,其光影效果和材质质感可以达到与专业摄影作品相媲美的程度。例如,在一个古建筑修复项目中,Stable Diffusion 准确地还原了古建筑的砖石材质质感和光影变化,为修复工作提供了非常有价值的参考。
- 可进行创新尝试,生成独特形态和结构。
通过调整模型参数或输入更具体的描述,设计师可以引导 Stable Diffusion 生成更加精细的建筑细节,如门窗样式、装饰元素等。同时,模型还能在已有设计的基础上进行创新尝试,生成一些传统设计方法中难以实现的独特形态和结构。例如,在一个未来城市规划项目中,Stable Diffusion 生成了一些具有独特形态的建筑结构,如悬浮在空中的建筑、可变形的建筑等,为城市规划带来了全新的思路和创意。
(二)影响
Stable Diffusion 为建筑设计领域带来了前所未有的变革与机遇。它不仅是技术的飞跃,更是创意与理性的完美融合。在 AI 的助力下,建筑师们将能够创造出更多令人惊叹的作品,让建筑成为连接过去与未来、自然与人文的桥梁。
首先,它改变了建筑设计的工作流程。传统的建筑设计流程通常需要花费大量的时间进行手绘草图和模型制作,而 Stable Diffusion 可以在短时间内生成多种设计方案,为设计师提供了更多的选择和灵感。这使得设计流程更加高效和灵活,设计师可以更快地将想法转化为实际的设计方案。
其次,它促进了建筑设计行业的创新。Stable Diffusion 的创新尝试能力为建筑设计带来了新的可能性,激发了设计师的创造力。设计师们可以更加大胆地尝试新的设计理念和风格,推动建筑设计行业不断向前发展。
最后,它提高了建筑设计的质量和效率。Stable Diffusion 的卓越细节处理能力和快速生成能力,使得设计师可以在更短的时间内完成更高质量的设计作品。这不仅有助于提高客户满意度,还可以为建筑设计企业带来更多的商业机会和竞争优势。
总之,Stable Diffusion 引领的建筑设计革命为建筑行业带来了无限可能。未来,随着技术的不断进步和应用的不断拓展,我们有理由相信,Stable Diffusion 将在建筑设计领域发挥更加重要的作用。
四、与其他工具对比
与 Midjourney 的对比
Midjourney 和 Stable Diffusion 作为当下热门的 AI 绘画工具,在多个方面存在明显的异同。
模型方面:
-
Midjourney 所采用的机器学习模型是专有的,只能靠开发的少数模型输出。这使得其生成的图像在风格上具有一定的独特性和稳定性,但也限制了用户对模型的定制和扩展。
-
Stable Diffusion 的代码和模型是开源免费的,模型更多。这意味着用户可以根据自己的需求进行修改和优化,同时也有更多的开发者参与到模型的改进和创新中,从而产生更加丰富多样的图像效果。
可访问性方面:
-
Midjourney 只能通过 Discord 才能使用。这对于一些不熟悉 Discord 平台的用户来说可能会增加使用的难度。同时,Discord 的使用可能会受到网络限制等因素的影响。
-
Stable Diffusion 如果设备配置较高,并且符合其运行要求,用户就可以下载并使用。这使得用户可以在本地进行图像生成,不受网络平台的限制,同时也可以更好地保护用户的隐私。
生成风格方面:
-
Midjourney 的模型在生成类似于绘画或草图的视觉效果方面表现出色,能够创造具有创意和视觉吸引力的图像。其图像风格更加艺术化、抽象化,适合用于创意设计和艺术创作。
-
Stable Diffusion 的开源模型经过了广泛的现实世界照片训练,擅长高效地生成逼真且精准的图像。其图像风格更加写实,适合用于建筑设计、产品设计等需要高度还原现实的领域。
用户界面方面:
-
Midjourney 提供了一个简单易用的界面,用户只需通过简单的指令即可快速生成图像。这对于初学者和非技术用户来说非常友好,无需具备太多的技术知识就可以轻松上手。
-
Stable Diffusion 则需要用户具备更多的技术知识才能操作。其界面相对较为复杂,提供了更多的定制选项和参数设置,适合那些喜欢深入挖掘和精细调控的用户。
上手难度方面:
-
Midjourney 对用户更友好,拥有相对简单的设置,可以更快、更轻松地生成更高质量的图像。用户只需注册 Discord 账号,进行简单的操作即可得到精美的图像。
-
Stable Diffusion 更为复杂,学习曲线更为陡峭。它提供了许多高级的、可定制的选项和功能,包括更改图像大小、生成图片数量、采样器等,让用户的效果图更加精准,但这也需要用户花费更多的时间和精力去学习和掌握。
生成速度方面:
-
Stable Diffusion 生成图像的速度甚至比 Midjourney 的快速模式还要快几秒钟。虽然 Midjourney 中的轻松模式更经济实惠,但需要更长的时间才能生成相同数量的图像。
-
在实际应用中,生成速度的差异可能会因不同的硬件配置、图像复杂度等因素而有所不同。但总体来说,Stable Diffusion 在生成速度上具有一定的优势。
收费情况方面:
-
Midjourney 要求订阅付费,起价为 10 美元,没有提供免费版或试用版。这对于一些用户来说可能会增加使用成本,尤其是对于那些只是偶尔使用的用户来说,可能会觉得不太划算。
-
Stable Diffusion 则可以免费下载和使用,适用于个人和商业用途。这使得用户可以在不花费任何费用的情况下就能够享受到高质量的图像生成服务,极大地降低了使用成本。
综上所述,Midjourney 和 Stable Diffusion 在模型、可访问性、生成风格、用户界面、上手难度、生成速度和收费情况等方面都存在着明显的异同。用户在选择使用时,可以根据自己的具体需求、技术背景和预算来决定。如果用户需要一个简单易用、快速产出高质量图像的工具,且不介意为此支付一定费用,那么 Midjourney 可能是更好的选择。对于那些具备一定技术基础,愿意投入时间和精力来掌握复杂工具的用户,特别是在预算有限的情况下,Stable Diffusion 则提供了一个强大且成本低廉的选择。
五、未来展望
随着科技的不断进步,建筑行业的数字化转型已成为必然趋势。Stable Diffusion 作为一种强大的 AI 图像生成技术,在未来的建筑领域中将发挥更加重要的作用。
首先,从技术发展的角度来看,Stable Diffusion 有望不断升级和优化。随着人工智能算法的不断改进,其生成图像的质量和速度将进一步提高。例如,未来可能会出现更加高效的模型训练方法,减少训练时间和成本,同时提高模型的准确性和稳定性。此外,随着计算机硬件性能的不断提升,Stable Diffusion 可以在更短的时间内生成更高分辨率的图像,为建筑设计提供更加精细的视觉效果。
其次,在应用场景方面,Stable Diffusion 将不仅仅局限于建筑方案的前期推敲和生成。它可能会在建筑施工、项目管理等领域发挥作用。例如,通过对施工现场的实时图像进行分析,Stable Diffusion 可以帮助施工人员更好地理解设计意图,提高施工质量和效率。同时,在项目管理方面,它可以生成可视化的进度报告,帮助项目团队更好地掌握项目进展情况。
再者,Stable Diffusion 还有望与其他数字化技术相结合,创造出更加智能的建筑设计解决方案。例如,与虚拟现实(VR)和增强现实(AR)技术相结合,可以为设计师和客户提供更加沉浸式的体验,让他们更好地感受建筑设计的效果。与物联网(IoT)技术相结合,可以实现建筑的智能化管理,提高建筑的能源效率和舒适度。
此外,随着 Stable Diffusion 在建筑行业的广泛应用,相关的法律法规和行业标准也将逐步完善。目前,AI 生成图像的版权问题、技术标准等方面还存在一些争议和不确定性。未来,政府和行业组织将加强对这方面的监管和规范,确保 Stable Diffusion 的应用合法、合规、安全。
最后,对于建筑设计师来说,掌握 Stable Diffusion 等数字化技术将成为必备的技能之一。设计师需要不断学习和适应新的技术,将其融入到自己的设计流程中,提高自己的设计水平和竞争力。同时,设计师也需要保持创新精神,充分发挥人类的创造力和想象力,与 AI 技术共同创造出更加优秀的建筑作品。
总之,未来建筑行业将更加注重数字化技术的应用,Stable Diffusion 技术的发展前景广阔。它将为建筑设计带来更多的可能性和创新,推动建筑行业向更加高效、精准、智能的方向发展。
六、实际案例
商建筑设计案例
在一个大型购物中心的设计项目中,设计团队利用 Stable Diffusion 进行方案创作。首先,设计师输入了详细的提示词,包括现代时尚的建筑主体风格、大面积玻璃和金属材质、周边有繁华商业街和公园的环境、多角度的视角以及知名效果图公司的风格参考等。通过不断调整参数,如迭代步数、采样方法和提示词引导系数等,在短短几个小时内就生成了数十种不同的设计方案。其中一些方案的独特造型和创新的立面设计,为项目带来了全新的思路。例如,有一个方案采用了弧形的玻璃幕墙设计,不仅增加了建筑的采光,还与周边的公园景观形成了良好的互动。通过 Stable Diffusion 生成的高质量效果图,也为客户提供了直观的视觉感受,有助于加快决策过程。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
1.stable diffusion安装包 (全套教程文末领取哈
)
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】