Apifox 4月更新|Apifox在线文档支持LLMs.txt、评论支持使用@提及成员、支持为团队配置「IP 允许访问名单」

Apifox 新版本上线啦!

看看本次版本更新主要涵盖的重点内容,有没有你所关注的功能特性:

  • Apifox 在线文档支持 LLMs.txt
  • 评论支持使用 @ 提及成员
  • 支持为团队配置「IP 允许访问名单」
  • 鉴权组件支持迭代分支、版本分支、修改历史记录
  • 用户反馈优化
    • 调试 LiteLLM 提供的 AI 大模型接口时,支持自动合并消息内容
    • 导入 OpenAPI 文件时,如果 body 定义了多种 media type,则按照顺序导入第 1 个
    • 导入 Postman 集合时,会导入集合、目录的说明
    • 解决当接口定义响应为 No-Content 时,对应的 Mock 服务响应时间过长的问题

将 Apifox 更新至最新版,一起开启全新体验吧!

Apifox 在线文档支持 LLMs.txt

和 Apifox 上个月推出的 MCP Server 一样,LLMs.txt 也是一种让 AI 助手访问 API 文档的优秀方案。

使用 Apifox 发布/分享的 API 文档,每个页面均提供.md格式的内容支持。用户可以点击「复制页面」按钮获取当前页面的 Markdown 内容,或者在页面 URL 后添加.md后缀,快速查看该页面的 Markdown 版本,将内容提供给 AI 作为上下文。

此外,每个文档站均自动生成/llms.txt作为.md内容格式的索引。更多关于 LLMs.txt 的更多内容,可以查看往期文章《Apifox 全面支持 LLMs.txt:让 AI 更好地理解你的 API 文档》。

评论支持使用 @ 提及成员

在对接口和测试场景进行评论时,可以使用 @ 提及团队成员,确保重要的讨论和反馈能及时传达给相人员,让团队协作变得更加高效顺畅。

支持为团队配置「IP 允许访问名单」

Apifox 新增「IP 允许访问名单」功能,支持为团队配置单个 IP 地址或 IP 范围(CIDR 表示法),限制只有在该名单上的 IP 才能访问团队资源。适合管理企业内网或特定办公网络的访问权限,为团队资产提供更精细的安全保护。

注:使用该功能需要升级为「商业专业版」。

鉴权组件支持迭代分支、版本分支、修改历史记录

最新版本的 Apifox 扩展了鉴权组件的功能,支持迭代分支、版本分支以及修改历史记录。团队可以在不同的迭代和版本分支中维护独立的鉴权设置,并通过历史记录功能追踪所有配置变更,为团队提供了更安全、规范的鉴权管理方式。

用户反馈优化

调试 LiteLLM 提供的 AI 大模型接口时,支持自动合并消息内容

在调试 LiteLLM 提供的 AI 大模型接口时,Apifox 能自动合并流式消息内容,提供清晰连贯的响应展示,使查看和分析 AI 模型输出更加直观,提升了接口调试的效率和体验。

导入 OpenAPI 文件时,如果 body 定义了多种 media type,则按照顺序导入第 1 个

我们优化了 OpenAPI 文件的导入逻辑。当导入的接口 body 中定义了多种 media type 时, Apifox 会按照序列导入顺位第 1 个。对于包含多种内容类型定义的 API 文档提供了更清晰的导入行为。

导入 Postman 集合时,会导入集合、目录的说明

导入 Postman 集合时,支持完整导入集合和目录的说明,确保迁移过程中不会丢失重要信息,让团队能够保留原有的集合逻辑与业务说明。

解决当接口定义响应为 No-Content 时,对应 Mock 服务响应时间过长的问题

我们修复了当接口响应被定义为 No-Content 时,Mock 服务的响应时间异常的情况,确保了更快速和高效的响应,为开发和测试流程提供更好的支持。

了解更多

当然,Apifox 产品团队为大家带来的新功能远不止上方这些:

  • 支持优化了 App 打开项目后的性能
  • 为发布的在线文档配置邮箱白名单时,可以自定义登录页的详细说明与输入邮箱后的提示语
  • 从数据库导入数据表以创建数据模型时,支持搜索数据库连接
  • 编辑者角色默认包含手动导入数据的权限
  • 统计测试覆盖率时,不再包含已废弃状态的接口
  • 非项目团队的成员访问公开项目时,将无法查看鉴权组件的默认鉴权值
  • 在线文档的生成代码功能,支持鉴权组件
  • 解决无法批量移动测试场景的问题
  • 解决通过数据库连接导入数据模型时,不支持配置时使用了变量的数据库的问题
  • 解决特定情况下,使用 Apifox MCP Server 时接口返回 422 错误的问题
  • 解决将项目移交到其他团队后解散原团队,该项目的在线文档无法被访问的问题
  • 解决导入 OpenAPI/Swagger 文件时,如果 tag 名称包含 / 和空格,则无法正确创建目录的问题

除了以上功能,我们也对产品其他细节和使用体验进行了优化,具体修改内容可前往 Apifox 更新日志查看

欢迎各位用户对 Apifox 继续提出使用反馈和优化意见,我们会持续优化更新,致力于为用户提供更优秀的产品功能和更极致的使用体验!

可以前往帮助文档查看更多功能使用说明和操作,有任何问题欢迎在 Apifox 用户群与我们交流沟通。

<think>好的,我现在需要解决用户关于如何通过pip安装llama_index.llms.llama_cpp依赖的问题。用户提到了使用`pip install llama-index[llama-cpp]`的要求和依赖,我需要先了解这个包的具体情况。 首先,我应该回忆一下llama-index和llama-cpp-python的关系。llama-index可能是一个高层库,而llama-cpp-python是底层绑定,用于与C++实现的模型交互。所以安装llama_index的llama-cpp支持可能需要先正确安装llama-cpp-python。 接下来,用户提供的引用中有几个关于安装llama-cpp-python的问题和解决方法。例如,引用[2]提到安装时出现OpenMP相关的错误,需要设置环境变量如`LDFLAGS`来链接libomp或libgomp。还有针对不同硬件(如Apple M系列、NVIDIA、AMD显卡)的CMAKE_ARGS参数。这些信息很重要,因为不同硬件需要不同的编译选项。 另外,引用[1]提到使用预编译的wheel文件安装,可以避免本地编译的问题,节省时间。用户可能需要优先推荐使用预编译版本,尤其是在CPU环境下。 然后,我需要整理安装步骤。首先,确保llama-cpp-python正确安装,可能包括处理环境变量和硬件特定的编译标志。然后,安装llama-index时指定llama-cpp的额外依赖,即使用`pip install llama-index[llama-cpp]`。可能还需要注意Python版本和系统依赖库,比如OpenMP的支持。 同时,用户可能遇到的问题包括编译失败、依赖缺失等。例如,在Linux系统中,可能需要安装gcc、cmake等构建工具,或者安装libopenblas-dev等库。对于错误信息如未找到libomp.so,需要指导用户如何查找并设置正确的环境变量。 最后,需要验证安装是否成功,可以建议用户导入模块并检查是否有错误。例如,尝试`from llama_index.llms import LlamaCPP`,如果没有报错则说明安装成功。 总结步骤应该是:安装系统依赖,设置硬件相关的环境变量,安装llama-cpp-python,最后安装llama-index的额外依赖。同时提供常见问题的解决方法,比如编译错误、缺少库文件等。</think>### 安装 `llama_index.llms.llama_cpp` 依赖的步骤 #### 1. **安装 `llama-cpp-python` 基础依赖** `llama_index` 的 `llama-cpp` 模块依赖 `llama-cpp-python` 库,需先正确安装它。以下是具体步骤: - **使用预编译版本(推荐)** 对于CPU环境,直接安装预编译的wheel文件,避免本地编译: ```bash pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu ``` 这适用于大多数场景且节省时间[^1]。 - **硬件加速支持(可选)** 根据硬件类型添加编译参数: - **Apple M系列(Metal GPU加速)** ```bash CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python ``` - **NVIDIA显卡(CUDA加速)** ```bash CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python ``` - **AMD显卡(HIP加速)** ```bash CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python ``` 这些参数会启用GPU加速功能[^2]。 #### 2. **解决常见编译问题** 若安装时出现编译错误(如缺少OpenMP库): - **查找并链接缺失的库** 例如,解决 `undefined reference to 'omp_get_thread_num'` 错误: ```bash # 查找 libomp.so 或 libgomp.so 的路径 find / -name "libomp.so" # 设置环境变量(路径需替换为实际值) export LDFLAGS="-L/usr/lib -lomp" # 或 -lgomp ``` 然后重新运行安装命令。 - **安装系统依赖** 确保已安装编译工具链: ```bash # Ubuntu/Debian sudo apt install build-essential cmake libopenblas-dev ``` #### 3. **安装 `llama-index` 的 `llama-cpp` 扩展** 安装主库并指定额外依赖: ```bash pip install "llama-index[llama-cpp]" ``` 这会自动安装 `llama-cpp-python` 和其他相关依赖。 #### 4. **验证安装** 测试是否成功导入模块: ```python from llama_index.llms import LlamaCPP # 无报错则安装成功 ``` ### 关键依赖说明 | 依赖项 | 作用 | 安装方式 | |----------------------|-----------------------------|------------------------------| | `llama-cpp-python` | 底层模型推理库 | 预编译或源码编译(需硬件参数) | | `llama-index` | 高层接口和功能实现 | `pip install "llama-index[llama-cpp]"` | | OpenMP库(如libomp) | 多线程并行计算支持 | 系统包管理或环境变量配置 | ### 常见问题解决 - **错误:`Failed to build wheels`** 检查Python版本(需≥3.8)和编译工具链,或尝试预编译版本[^3]。 - **GPU加速未生效** 确认硬件参数(如`CMAKE_ARGS`)正确设置,并安装对应驱动(如CUDA Toolkit)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值