亚马逊云科技:使用Inf2实例运行大语言模型GPT-J-6B基础设施

亚马逊云科技发布Inferentia2芯片和Inf2实例,专为大型模型推理设计。Inf2实例提供高吞吐量和低延迟,适合运行GPT-J-6B这样的大语言模型,性能比类似EC2实例提升显著。通过AWS Neuron SDK和transformers-neuronx库,实现了模型的高效部署和优化。
摘要由CSDN通过智能技术生成

在2019年的亚马逊云科技re:Invent上,亚马逊云科技发布了Inferentia芯片和Inf1实例这两个基础设施。Inferentia是一种高性能机器学习推理芯片,由亚马逊云科技定制设计,其目的是提供具有成本效益的大规模低延迟预测。时隔四年,2023年4月亚马逊云科技发布了Inferentia2芯片和Inf2实例,旨在为大型模型推理提供技术保障。

438a9e90eb5b4965b22d40d5346bfb36.png

 

Inf2实例的应用场景

使用亚马逊云科技Inf2实例运行流行的应用程序,例如文本摘要、代码生成、视频和图像生成、语音识别、个性化等。Inf2实例是Amazon EC2中的第一个推理优化实例,引入了由NeuronLink(一种高速、非阻塞互连)支持的横向扩展分布式推理。现在可以在Inf2实例上跨多个加速器高效部署具有数千亿个参数的模型。Inf2实例的吞吐量比其他类似的Amazon EC2实例高出三倍,延迟低八倍,性价比高出40%。为了实现可持续发展目标,与其他类似的Amazon EC2实例相比,Inf2实例的每瓦性能提高了50%。

 

使用Inf2实例运行GPT-J-6B模型

GPT-J-6B是由一组名为EleutherAI的研究人员创建的开源自回归语言模型。它是OpenAI的GPT-3最先进的替代方案之一,在聊天、摘要和问答等广泛的自然语言任务中表现良好。

该模型由28层组成,模型维度为4096,前馈维度为16384。模型维度分为16个头,每个头的维度为256。旋转位置嵌入(RoPE)应用于每个头的64个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值