高等数学:高斯定理

一、前提条件

x = r s i n θ c o s ψ y = r s i n θ s i n ψ z = r c o s θ 0 ≤ r 0 ≤ θ ≤ π 0 ≤ ψ ≤ 2 π x=rsin\theta cos\psi \\ y=rsin\theta sin\psi \\ z=rcos\theta \\ 0\leq r \\ 0\leq\theta\leq\pi \\ 0\leq\psi\leq2\pi x=rsinθcosψy=rsinθsinψz=rcosθ0r0θπ0ψ2π
很直观: x , y x,y x,y r s i n θ rsin\theta rsinθ 分掉, z z z 分走 r c o s θ rcos\theta rcosθ ,得到 d S = r 2 s i n θ d θ d ψ dS=r^2sin\theta d\theta d\psi dS=r2sinθdθdψ,【 d S = r s i n θ d ψ ⋅ r d θ dS=rsin\theta d\psi \cdot rd\theta dS=rsinθdψrdθ 】,将

面积微元视为长方形长为 r s i n θ d ψ rsin\theta d\psi rsinθdψ,宽为 r d θ rd\theta rdθ d Ω = d S d r 2 = s i n θ d θ d ψ d\Omega=\frac{dS}{dr^2}=sin\theta d\theta d\psi dΩ=dr2dS=sinθdθdψ ,

d V = d S d r = r 2 s i n θ d r d θ d ψ dV=dSdr=r^2sin\theta drd\theta d\psi dV=dSdr=r2sinθdrdθdψ ,积分可得: S = 4 π r 2 , Ω = 4 π , V = 4 π r 3 3 S=4\pi r^2 , \Omega=4\pi , V=\frac{4\pi r^3}{3} S=4πr2,Ω=4π,V=34πr3,和数学一致

球的立体角就是 4 π 4\pi 4π,联系圆周角为 2 π 2\pi 2π

二、高斯定律

内容:真空中任何静电场,通过任意闭合曲面的电场强度通量,等于该曲面所包围的电荷电量代数和除以 ε 0 \varepsilon_{0} ε0

三、高斯定律应用

电场强度的计算:
步骤:分析 q q q 的对称性 → \rightarrow 电场的对称性 → \rightarrow 选取适当高斯面

最简单的是选择球面,这里不赘述,复杂的是选择一个圆柱面或者平面,下面是选择圆柱面的高斯面进行分析

例1.

物理学中的面只有一面,“不可撕”,单向,根据分析发现,在某点的场强方向永远向外侧

圆柱高斯面的侧面与电场线方向平行,所以场强为0,只需关注左右底的场强,注意,这里规定的正方向应该是:

穿出高斯面为正 ,故: 2 E S = σ S ε 0 2ES=\frac{\sigma S}{\varepsilon_{0}} 2ES=ε0σS ,得到 E = σ 2 ε E=\frac{\sigma}{2\varepsilon} E=2εσ,空间内任一点处场强都相同

例2.在实心带电球体内,电荷均匀分布,在其中挖一个小球,产生空腔,求空腔内一点的电场强度

思路:场叠加原理,在未挖去小球情况下,在这点的场强记为 E1 ,挖去之后记为 E2 ,可以发现 E1 和 E2 相

差的场强就是被挖去小球的在该点产生的场强,记为 E3 , E2=E1-E3 ,原带点总量为 q ,假设大球半径

为 R ,小球半径为 R’ ,大球球心距该点距离为 r1 ,小球球心距该点距离为 r2 ,两个球心相距 a 电荷量密度为
ρ \rho ρ ,有 ρ = q 4 π r 3 3 \rho=\frac{q}{\frac{4\pi r^3}{3}} ρ=34πr3q进而 E 2 = E 1 − E 3 = ρ 4 π r 1 3 3 4 π ε 0 R 3 r 1 2 e r 1 − ρ 4 π r 2 3 3 4 π ε 0 R 3 r 2 2 e r 2 = ρ 3 ε 0 ( r 1 − r 2 ) = ρ 3 ε 0 a E2=E1-E3=\frac{\rho \frac{4\pi r_{1}^3}{3}}{4\pi \varepsilon _{0}R^3r_{1}^2}e_{r_{1}}-\frac{\rho \frac{4\pi r_{2}^3}{3}}{4\pi \varepsilon _{0}R^3r_{2}^2}e_{r_{2}}=\frac{\rho}{3\varepsilon_{0}}(r_{1}-r_{2})=\frac{\rho}{3\varepsilon_{0}}a E2=E1E3=4πε0R3r12ρ34πr13er14πε0R3r22ρ34πr23er2=3ε0ρ(r1r2)=3ε0ρa

可以看到任意位置场强都是相等的,记住结论

补充:细棒无限长,电荷均匀分布,则距离细棒 x 处产生的场强是 λ 2 π ε 0 x \frac{\lambda}{2\pi\varepsilon_{0}x} 2πε0xλ λ \lambda λ 为线密度

最后有一点题外话:可以用球坐标求解三维重极限问题

( x y z x 2 + y 2 + z 2 ) x + y (\frac{xyz}{x^2+y^2+z^2})^{x+y} (x2+y2+z2xyz)x+y重极限不存在,看到指数变形式, e ( x + y ) l n ( x y z x 2 + y 2 + z 2 ) e^{(x+y)ln(\frac{xyz}{x^2+y^2+z^2})} e(x+y)ln(x2+y2+z2xyz) ,拆开指数部分,

( x + y ) l n ( x y z ) − ( x + y ) l n ( x 2 + y 2 + z 2 ) (x+y)ln(xyz)-(x+y)ln(x^2+y^2+z^2) (x+y)ln(xyz)(x+y)ln(x2+y2+z2) ,先讨论前一项,前一项取路径 y = x y=x y=x化三元为二元,得到

4 x l n x + 2 x l n z 4xlnx+2xlnz 4xlnx+2xlnz,前者极限为0,后者极限不存在,分别取路径 z = x z=x z=x l n z = − 1 x lnz=-\frac{1}{x} lnz=x1 ,得到结果不同,故

( x + y ) l n ( x y z ) (x+y)ln(xyz) (x+y)ln(xyz) 极限不存在,再看 ( x + y ) l n ( x 2 + y 2 + z 2 ) (x+y)ln(x^2+y^2+z^2) (x+y)ln(x2+y2+z2),球坐标代换,

2 ( r s i n θ c o s ψ + r s i n θ s i n ψ ) l n r 2(rsin\theta cos\psi+rsin\theta sin\psi)lnr 2(rsinθcosψ+rsinθsinψ)lnr,极限为0,一个极限存在,一个不存在,所以总极限不存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值