一、前提条件
x
=
r
s
i
n
θ
c
o
s
ψ
y
=
r
s
i
n
θ
s
i
n
ψ
z
=
r
c
o
s
θ
0
≤
r
0
≤
θ
≤
π
0
≤
ψ
≤
2
π
x=rsin\theta cos\psi \\ y=rsin\theta sin\psi \\ z=rcos\theta \\ 0\leq r \\ 0\leq\theta\leq\pi \\ 0\leq\psi\leq2\pi
x=rsinθcosψy=rsinθsinψz=rcosθ0≤r0≤θ≤π0≤ψ≤2π
很直观:
x
,
y
x,y
x,y 将
r
s
i
n
θ
rsin\theta
rsinθ 分掉,
z
z
z 分走
r
c
o
s
θ
rcos\theta
rcosθ ,得到
d
S
=
r
2
s
i
n
θ
d
θ
d
ψ
dS=r^2sin\theta d\theta d\psi
dS=r2sinθdθdψ,【
d
S
=
r
s
i
n
θ
d
ψ
⋅
r
d
θ
dS=rsin\theta d\psi \cdot rd\theta
dS=rsinθdψ⋅rdθ 】,将
面积微元视为长方形长为 r s i n θ d ψ rsin\theta d\psi rsinθdψ,宽为 r d θ rd\theta rdθ , d Ω = d S d r 2 = s i n θ d θ d ψ d\Omega=\frac{dS}{dr^2}=sin\theta d\theta d\psi dΩ=dr2dS=sinθdθdψ ,
d V = d S d r = r 2 s i n θ d r d θ d ψ dV=dSdr=r^2sin\theta drd\theta d\psi dV=dSdr=r2sinθdrdθdψ ,积分可得: S = 4 π r 2 , Ω = 4 π , V = 4 π r 3 3 S=4\pi r^2 , \Omega=4\pi , V=\frac{4\pi r^3}{3} S=4πr2,Ω=4π,V=34πr3,和数学一致
球的立体角就是 4 π 4\pi 4π,联系圆周角为 2 π 2\pi 2π
二、高斯定律
内容:真空中任何静电场,通过任意闭合曲面的电场强度通量,等于该曲面所包围的电荷电量代数和除以 ε 0 \varepsilon_{0} ε0
三、高斯定律应用
电场强度的计算:
步骤:分析
q
q
q 的对称性
→
\rightarrow
→ 电场的对称性
→
\rightarrow
→ 选取适当高斯面
最简单的是选择球面,这里不赘述,复杂的是选择一个圆柱面或者平面,下面是选择圆柱面的高斯面进行分析
例1.
物理学中的面只有一面,“不可撕”,单向,根据分析发现,在某点的场强方向永远向外侧
圆柱高斯面的侧面与电场线方向平行,所以场强为0,只需关注左右底的场强,注意,这里规定的正方向应该是:
穿出高斯面为正 ,故: 2 E S = σ S ε 0 2ES=\frac{\sigma S}{\varepsilon_{0}} 2ES=ε0σS ,得到 E = σ 2 ε E=\frac{\sigma}{2\varepsilon} E=2εσ,空间内任一点处场强都相同
例2.在实心带电球体内,电荷均匀分布,在其中挖一个小球,产生空腔,求空腔内一点的电场强度
思路:场叠加原理,在未挖去小球情况下,在这点的场强记为 E1 ,挖去之后记为 E2 ,可以发现 E1 和 E2 相
差的场强就是被挖去小球的在该点产生的场强,记为 E3 , E2=E1-E3 ,原带点总量为 q ,假设大球半径
为 R ,小球半径为 R’ ,大球球心距该点距离为 r1 ,小球球心距该点距离为 r2 ,两个球心相距 a 电荷量密度为
ρ
\rho
ρ ,有
ρ
=
q
4
π
r
3
3
\rho=\frac{q}{\frac{4\pi r^3}{3}}
ρ=34πr3q进而
E
2
=
E
1
−
E
3
=
ρ
4
π
r
1
3
3
4
π
ε
0
R
3
r
1
2
e
r
1
−
ρ
4
π
r
2
3
3
4
π
ε
0
R
3
r
2
2
e
r
2
=
ρ
3
ε
0
(
r
1
−
r
2
)
=
ρ
3
ε
0
a
E2=E1-E3=\frac{\rho \frac{4\pi r_{1}^3}{3}}{4\pi \varepsilon _{0}R^3r_{1}^2}e_{r_{1}}-\frac{\rho \frac{4\pi r_{2}^3}{3}}{4\pi \varepsilon _{0}R^3r_{2}^2}e_{r_{2}}=\frac{\rho}{3\varepsilon_{0}}(r_{1}-r_{2})=\frac{\rho}{3\varepsilon_{0}}a
E2=E1−E3=4πε0R3r12ρ34πr13er1−4πε0R3r22ρ34πr23er2=3ε0ρ(r1−r2)=3ε0ρa
可以看到任意位置场强都是相等的,记住结论
补充:细棒无限长,电荷均匀分布,则距离细棒 x 处产生的场强是 λ 2 π ε 0 x \frac{\lambda}{2\pi\varepsilon_{0}x} 2πε0xλ , λ \lambda λ 为线密度
最后有一点题外话:可以用球坐标求解三维重极限问题
( x y z x 2 + y 2 + z 2 ) x + y (\frac{xyz}{x^2+y^2+z^2})^{x+y} (x2+y2+z2xyz)x+y重极限不存在,看到指数变形式, e ( x + y ) l n ( x y z x 2 + y 2 + z 2 ) e^{(x+y)ln(\frac{xyz}{x^2+y^2+z^2})} e(x+y)ln(x2+y2+z2xyz) ,拆开指数部分,
( x + y ) l n ( x y z ) − ( x + y ) l n ( x 2 + y 2 + z 2 ) (x+y)ln(xyz)-(x+y)ln(x^2+y^2+z^2) (x+y)ln(xyz)−(x+y)ln(x2+y2+z2) ,先讨论前一项,前一项取路径 y = x y=x y=x化三元为二元,得到
4 x l n x + 2 x l n z 4xlnx+2xlnz 4xlnx+2xlnz,前者极限为0,后者极限不存在,分别取路径 z = x z=x z=x 和 l n z = − 1 x lnz=-\frac{1}{x} lnz=−x1 ,得到结果不同,故
( x + y ) l n ( x y z ) (x+y)ln(xyz) (x+y)ln(xyz) 极限不存在,再看 ( x + y ) l n ( x 2 + y 2 + z 2 ) (x+y)ln(x^2+y^2+z^2) (x+y)ln(x2+y2+z2),球坐标代换,
2 ( r s i n θ c o s ψ + r s i n θ s i n ψ ) l n r 2(rsin\theta cos\psi+rsin\theta sin\psi)lnr 2(rsinθcosψ+rsinθsinψ)lnr,极限为0,一个极限存在,一个不存在,所以总极限不存在