模型引入:
“将军”饮马问题主要利用构造对称图形化折为直解决求路径、两线段和差、三角形、四边形周长最值等一系列问题,经常和直线、角、三角形、四边形、圆、抛物线等图形结合,在中考和联考中常出现,而且大多以压轴题的形式出现.几何解题的过程中要善于套用模型,把问题转化成与之对应的模型.
方法原理:
1.两点之间,线段最短;
2.三角形两边之和大于第三边,两边之差小于第三边;
3.点到直线的距离,垂线段最短.
模型分类:
模型一:定直线与两定点(一动两定型)
(一)距离之和最短:同侧和两侧;
(二)距离之差的绝对值最大:同侧和两侧;
(三)距离之差的绝对值最小(即动点P到两点的距离相等):同侧和两侧.
模型二:角与定点(两动一定型)
(一)距离之和最短:定点在角的内部、定点在角的外部;
(二)周长最小:三角形周长(一定两动)、四边形周长(两定两动)、两动两定变式.
模型一:定直线与两定点(一动两定型)
(一)距离之和最短(化折为直)
1.两侧型:两点分别在直线两侧(基础本质型)
已知:如图①,定点A、B分别位于直线L的两侧.
要求:在直线L上找一点P,使得PA+PB的值最小.
作图:连接AB与直线L交于点P,点P即为所求作的点,PA+PB的最小值即为线段AB的长度.
证明:在直线L上任取一点动点P’,连接AP’,BP’.
在△ABP’中,
∵AP’+BP’≥AB,即AP’+BP’≥PA+PB,
∴当线段AB与直线L相交于点P时,PA+PB最小.
结论:PA+PB最小(AB)
2.同侧型:两点在直线同侧(将军饮马)
已知:如图①,定点A、B位于直线L的同一侧.
要求:在直线L上找一点P,使得PA+PB的值最小.
作图:作点A、B任意一点关于直线L的对称点,
连接AB’交直线L于点P,则点P即为所求.
证明:根据轴对称的性质知直线L为线段BB’的中垂线,
由中垂线的性质得PB=PB’,要使PA+PB最小,则需PA+PB’最小,从而转化为两侧型.
结论:PA+PB最小(AB’).
(二)距离之差的绝对值最大
1.同侧型:
已知:如图①,定点A、B位于直线L的同一侧(A、B两点到L的距离不等).
要求:在直线L上找一点P,使得|PA-PB|的值最大.
作图:连接AB并延长,与直线L交于点P,点P即为所求.
证明:在L上任取一点P’(异于点P),连接P’A,P’B.由三角形三边关系知|P’A-P’B|<AB,即|P’A-P’B|≤|PA-PB|.
结论:|PA-PB|最大(AB).
2.同侧型:
已知:如图①,定点A、B位于直线L的两侧(A、B两点到l的距离不等).
要求:在直线L上找一点P,使得|PA-PB|的值最大.
作图:作点A、B任意一点关于直线L的对称点,
连接AB’并延长,与直线L交于点P,点P即为所求.
证明:根据轴对称的性质知直线L为线段BB’的中垂线,
由中垂线的性质得PB=PB’,要使|PA-PB|最大,则需|PA-PB’|最大,从而转化为同侧型.
结论:|PA-PB|最大为AB’.
(三)距离之差的绝对值最小(垂直平分线性质定理应用)
要求:如图①、②,在直线L上找一点P,使得|PA-PB|有最小值.
作图:连接AB,作线段AB的垂直平分线与直线L交于点P,
点P即为所求作的点.
证明:由中垂线的性质得PB=PB,要使|PA-PB|最小为0.
结论:|PA-PB|的最小值为0.
模型二:角与定点(两动一定型)
(一)距离之和最短
1.定点在角的外部
已知:如图①,P点为锐角∠MON外一定点.
要求:在射线OM上找一点A,在射线ON上找一点B,使得PA+AB的值最小.
作图:如图②,过点P作PB⊥ON于点B,PB与OM相交于点A.此时,AP+AB最小.
证明:AP+AB≥PB,当且仅当A,P,B三点共线时,AP+PQ取得最小值PB,根据点到直线的距离,垂线段最短,当PB⊥ON时,PB最短.
结论:PA+AB的最小值为PB.
2.定点在角的内部
已知:如图①,P点为锐角∠MON内一定点.
要求:在射线OM上找一点A,在射线ON上找一点B,使得PA+AB的值最小.
作图:如图②,作点P关于OM的对称点P’,过点P’作ON的垂线分别交OM、ON于A、B.点A、B即为所求作的点.
证明:由轴对称的性质得PA=P’A,要使PA+AB最小,只需P’A+AB最小,从而转化为定点在角外部模型.
结论:PA+AB的最小值为P’B.
3.三角形周长最小
已知:如图①,P点为锐角∠MON内一定点.
要求:在射线OM上找一点A,在射线ON上找一点B,使得△PAB的周长最小.
作图:如图②,分别作P点关于直线OM的对称点P’,关于ON的对称点P’‘,连接P’P’‘交OM于点A,交ON于点B,点A、点B即为所求,此时△PAB的周长最小,最小值为线段P’P’'的长度.
证明:由轴对称的性质可知AP=AP’,BP=BP’‘,△APB的周长AP+AB+BP=AP’+AB+BP’‘,当P’、A、B、P’'四点共线时,其值最小.
结论:△PAB的周长最小为P’P’'.
4.四边形周长最小
已知:如图①,P、Q为锐角∠MON内的两个定点.
要求:在射线OM上找一点A,在射线ON上找一点B,使得四边形ABPQ的周长最小.
作图:如图②,分别作Q点关于直线OM的对称点Q’,P点关于ON的对称点P’',连接P’Q’交OM于点A,交ON于点B,
点A、点B即为所求,此时四边形ABPQ的周长最小,最小值为线段P’Q’+PQ.
结论:四边形ABPQ的周长最小为P’Q’+PQ.
5.两动两定变式模型
已知:如图①,A、B为两个定点,P、Q为动点.
要求:在射线OM上找一点Q,在射线ON上找一点P,使得AP+PQ+QB最短最小.
作图:如图②,分别作A点关于直线ON的对称点A’,B点关于OM的对称点B’,连接A’B’交OM于点Q,交ON于点P,点P、点Q即为所求,此时AP+PQ+QB最小,最小值为线段A’B’.
结论:AP+PQ+QB最小为线段A’B’的长.