高等数学:周期函数

定义

对于 y = f ( x ) y=f(x) y=f(x),如果存在一个常数 T ≠ 0 T\ne0 T=0 .使得当 x 取定义域内的每一个值时,都有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立,那么函数 y = f ( x ) y=f(x) y=f(x)叫周期函数,非零常数 T 叫做 f ( x ) f(x) f(x)的周期。

定义需要注意的点:

定义应对定义域中的每一个 x 值来说,只有个别的 x 值满足 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 或不满足都不能说 T 是 f ( x ) f(x) f(x)的周期。
从等式 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)来看,应强调的是自变量 x 本身加的常数才是周期,如 f ( 2 x + T ) = f ( 2 x ) f(2x+T)=f(2x) f(2x+T)=f(2x) , T 不是周期,而应写成 f ( 2 x + T ) = f [ 2 ( x + T 2 ) ] = f ( 2 x ) f(2x+T)=f[2(x+\frac{T}{2})]=f(2x) f(2x+T)=f[2(x+2T)]=f(2x) ,则 T 2 \frac{T}{2} 2T 是 f(x) 的周期。
在周期函数 y = f ( x ) y=f(x) y=f(x)中, T 是周期,若 x 是定义域的一个值, x + k T x+kT x+kT( k ∈ Z k\in Z kZ,且 k ≠ 0 k\ne 0 k=0) 也一定属于定义域,因此周期函数的定义域一定是无限集,而且定义域一定无上界或无下界。

最小正周期

周期函数的周期可以不止一个,如果在所有的周期中存在着一个最小正数,则称这个最小正数为该函数的最小正周期。

最小正周期需要注意:

周期函数不一定有最小正周期。比如常数函数,任何非零实数都是它的周期,但它没有最小正周期。
f ( x ) f(x) f(x) 是定义在区间 ( − ∞ , + ∞ ) (-∞,+∞) (+) 上以 T 为周期的函数,则对于 k ∈ Z k∈Z kZ k ≠ 0 k≠0 k=0 , kT 也是 f ( x ) f(x) f(x)的周期。

周期函数的判定定理

对于函数 y = f ( x ) y=f(x) y=f(x) ,若关于 T 的方程 f ( x + T ) − f ( x ) = 0 f(x+T)-f(x)=0 f(x+T)f(x)=0 有与 x 无关的非零常数解 T ∗ T^{*} T,则 y = f ( x ) y=f(x) y=f(x)是周期函数,且 T ∗ T^{*} T 是它的一个周期。
若函数 y = f ( x ) ( x ∈ R ) y=f(x)(x∈R) y=f(x)(xR)的图象关于 x = a x=a x=a x = b ( b ≠ a ) x=b(b≠a) x=b(b=a)都对称,则 f ( x ) f(x) f(x)是周期函数,且 2 ∣ b − a ∣ 2|b-a| 2∣ba是它的一个周期。
如果一个偶函数的图象关于 x = a ( a ≠ 0 ) x=a(a≠0) x=a(a=0) 对称,则必是周期函数,且 2 a 2a 2a 是它的一个周期。
若函数 f(x) 的图象关于点 (a,0) 与 (b,0)(a≠b) 都对称,则 f(x) 是周期函数,且 2|b-a| 是它的一个周期。
如果一个奇函数的图象关于 (a,0)(a≠0) 对称,则必是周期函数,且 2a 是它的一个周期。
设 f(x) 是定义在 R 上的函数, a、b 是不为零的常数
①若满足 f(x+a)=f(x+b) ,则 f(x) 是周期函数,且 a-b 是它的一个周期。特别地,若 f(x+a)=f(x-a) ,则 f(x) 是周期函数,且 2a 是它的一个周期。
②若满足 f(x+a)=-f(x) ,则 f(x) 是周期函数,且 2a 是它的一个周期。
③若满足 f(x+a)=\pm\frac{1}{f(x)} ,则 f(x) 是周期函数,且 2a 是它的一个周期。
④若满足 f(x)=f(x-a) ,则 f(x) 是周期函数,且 a 是它的一个周期。
⑤若 f(x+a)=-f(x+b) ,则 f(x) 是周期函数,且 2(a-b) 为 f(x) 的一个周期。特别地,若 f(x+a)=-f(x-a) ,则 f(x) 是周期函数,且 4a 为 f(x) 的一个周期。
7. 若函数 y=f(x)(x∈R) 满足 f(x)=f(x+a)+f(x-a) ( a>0 的常数),则 f(x) 是周期函数,且 6a 是它的一个周期。

  1. 设 y=f(x) 是实数集 M 上的周期函数,则

① kf(x)+c(k,c为常数)是 M 上的周期函数;
② |f(x)| 是 M 上的周期函数;
③ \frac{1}{f(x)} 是 {x|f(x)≠0,x∈M}上的周期函数;
④ f(ax+b) 是 {x|ax+b,x∈M}上的周期函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值