定义
对于 y = f ( x ) y=f(x) y=f(x),如果存在一个常数 T ≠ 0 T\ne0 T=0 .使得当 x 取定义域内的每一个值时,都有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 成立,那么函数 y = f ( x ) y=f(x) y=f(x)叫周期函数,非零常数 T 叫做 f ( x ) f(x) f(x)的周期。
定义需要注意的点:
定义应对定义域中的每一个 x 值来说,只有个别的 x 值满足
f
(
x
+
T
)
=
f
(
x
)
f(x+T)=f(x)
f(x+T)=f(x) 或不满足都不能说 T 是
f
(
x
)
f(x)
f(x)的周期。
从等式
f
(
x
+
T
)
=
f
(
x
)
f(x+T)=f(x)
f(x+T)=f(x)来看,应强调的是自变量 x 本身加的常数才是周期,如
f
(
2
x
+
T
)
=
f
(
2
x
)
f(2x+T)=f(2x)
f(2x+T)=f(2x) , T 不是周期,而应写成
f
(
2
x
+
T
)
=
f
[
2
(
x
+
T
2
)
]
=
f
(
2
x
)
f(2x+T)=f[2(x+\frac{T}{2})]=f(2x)
f(2x+T)=f[2(x+2T)]=f(2x) ,则
T
2
\frac{T}{2}
2T 是 f(x) 的周期。
在周期函数
y
=
f
(
x
)
y=f(x)
y=f(x)中, T 是周期,若 x 是定义域的一个值,
x
+
k
T
x+kT
x+kT(
k
∈
Z
k\in Z
k∈Z,且
k
≠
0
k\ne 0
k=0) 也一定属于定义域,因此周期函数的定义域一定是无限集,而且定义域一定无上界或无下界。
最小正周期
周期函数的周期可以不止一个,如果在所有的周期中存在着一个最小正数,则称这个最小正数为该函数的最小正周期。
最小正周期需要注意:
周期函数不一定有最小正周期。比如常数函数,任何非零实数都是它的周期,但它没有最小正周期。
若
f
(
x
)
f(x)
f(x) 是定义在区间
(
−
∞
,
+
∞
)
(-∞,+∞)
(−∞,+∞) 上以 T 为周期的函数,则对于
k
∈
Z
k∈Z
k∈Z,
k
≠
0
k≠0
k=0 , kT 也是
f
(
x
)
f(x)
f(x)的周期。
周期函数的判定定理
对于函数
y
=
f
(
x
)
y=f(x)
y=f(x) ,若关于 T 的方程
f
(
x
+
T
)
−
f
(
x
)
=
0
f(x+T)-f(x)=0
f(x+T)−f(x)=0 有与 x 无关的非零常数解
T
∗
T^{*}
T∗,则
y
=
f
(
x
)
y=f(x)
y=f(x)是周期函数,且
T
∗
T^{*}
T∗ 是它的一个周期。
若函数
y
=
f
(
x
)
(
x
∈
R
)
y=f(x)(x∈R)
y=f(x)(x∈R)的图象关于
x
=
a
x=a
x=a
x
=
b
(
b
≠
a
)
x=b(b≠a)
x=b(b=a)都对称,则
f
(
x
)
f(x)
f(x)是周期函数,且
2
∣
b
−
a
∣
2|b-a|
2∣b−a∣是它的一个周期。
如果一个偶函数的图象关于
x
=
a
(
a
≠
0
)
x=a(a≠0)
x=a(a=0) 对称,则必是周期函数,且
2
a
2a
2a 是它的一个周期。
若函数 f(x) 的图象关于点 (a,0) 与 (b,0)(a≠b) 都对称,则 f(x) 是周期函数,且 2|b-a| 是它的一个周期。
如果一个奇函数的图象关于 (a,0)(a≠0) 对称,则必是周期函数,且 2a 是它的一个周期。
设 f(x) 是定义在 R 上的函数, a、b 是不为零的常数
①若满足 f(x+a)=f(x+b) ,则 f(x) 是周期函数,且 a-b 是它的一个周期。特别地,若 f(x+a)=f(x-a) ,则 f(x) 是周期函数,且 2a 是它的一个周期。
②若满足 f(x+a)=-f(x) ,则 f(x) 是周期函数,且 2a 是它的一个周期。
③若满足 f(x+a)=\pm\frac{1}{f(x)} ,则 f(x) 是周期函数,且 2a 是它的一个周期。
④若满足 f(x)=f(x-a) ,则 f(x) 是周期函数,且 a 是它的一个周期。
⑤若 f(x+a)=-f(x+b) ,则 f(x) 是周期函数,且 2(a-b) 为 f(x) 的一个周期。特别地,若 f(x+a)=-f(x-a) ,则 f(x) 是周期函数,且 4a 为 f(x) 的一个周期。
7. 若函数 y=f(x)(x∈R) 满足 f(x)=f(x+a)+f(x-a) ( a>0 的常数),则 f(x) 是周期函数,且 6a 是它的一个周期。
- 设 y=f(x) 是实数集 M 上的周期函数,则
① kf(x)+c(k,c为常数)是 M 上的周期函数;
② |f(x)| 是 M 上的周期函数;
③ \frac{1}{f(x)} 是 {x|f(x)≠0,x∈M}上的周期函数;
④ f(ax+b) 是 {x|ax+b,x∈M}上的周期函数。