高等数学:笛卡尔定理(中)


有一类数列,选择四个数字作为种子,它就能依靠特定的递推规则向两头无限增长,并且相邻两项的比值都会趋近于 φ + φ \varphi + \sqrt{\varphi} φ+φ ,而其中的 φ \varphi φ就是大名鼎鼎的黄金分割比。 比如下面的四个数列,红色的数就是生成整个数列的种子。 ⋯   ,   12563 ,   4346 ,   1503 ,   522 ,   179 ,   62 ,   23 ,   6 ,   3 ,   2 ,   − 1 ,   2 ,   3 ,   6 ,   23 ,   62 ,   179 ,   522 ,   1503 ,   4346 ,   12563 ,   ⋯ ⋯   ,   36295 ,   12558 ,   4342 ,   1507 ,   519 ,   178 ,   66 ,   19 ,   7 ,   6 ,   − 2 ,   3 ,   7 ,   10 ,   42 ,   115 ,   327 ,   958 ,   2758 ,   7971 ,   23047 ,   ⋯ ⋯   ,   28464 ,   9845 ,   3405 ,   1184 ,   404 ,   141 ,   53 ,   12 ,   8 ,   5 ,   − 3 ,   8 ,   12 ,   29 ,   101 ,   276 ,   800 ,   2325 ,   6701 ,   19376 ,   56004 ,   ⋯ ⋯   ,   39695 ,   13730 ,   4763 ,   1638 ,   567 ,   206 ,   59 ,   26 ,   15 ,   − 6 ,   11 ,   14 ,   23 ,   102 ,   267 ,   770 ,   2255 ,   6482 ,   18747 ,   54198 ,   156599 ,   ⋯ \cdots,\,12563,\,4346,\,1503,\,522,\,179,\,62,\,23,\,6,\,3,\,\color{red}{2,\,-1,\,2,\,3},\,6,\,23,\,62,\,179,\,522,\,1503,\,4346,\,12563,\,\cdots \\ \cdots,\,36295,\,12558,\,4342,\,1507,\,519,\,178,\,66,\,19,\,7,\,\color{red}{6,\,-2,\,3,\,7},\,10,\,42,\,115,\,327,\,958,\,2758,\,7971,\,23047,\,\cdots \\ \cdots,\,28464,\,9845,\,3405,\,1184,\,404,\,141,\,53,\,12,\,8,\,\color{red}{5,\,-3,\,8,\,12},\,29,\,101,\,276,\,800,\,2325,\,6701,\,19376,\,56004,\,\cdots \\ \cdots,\,39695,\,13730,\,4763,\,1638,\,567,\,206,\,59,\,26,\,\color{red}{15,\,-6,\,11,\,14},\,23,\,102,\,267,\,770,\,2255,\,6482,\,18747,\,54198,\,156599,\,\cdots ,12563,4346,1503,522,179,62,23,6,3,2,1,2,3,6,23,62,179,522,1503,4346,12563,,36295,12558,4342,1507,519,178,66,19,7,6,2,3,7,10,42,115,327,958,2758,7971,23047,,28464,9845,3405,1184,404,141,53,12,8,5,3,8,12,29,101,276,800,2325,6701,19376,56004,,39695,13730,4763,1638,567,206,59,26,15,6,11,14,23,102,267,770,2255,6482,18747,54198,156599,
有一种分数加法,它…可谓错得离谱:取两个分数,分子分母分别相加,得到结果。用特殊记号 ⊕ \oplus 表示它,写成公式的话,长这样:
a b ⊕ c d = a + c b + d ( e . g .      1 2 ⊕ 2 3 = 3 5 ) \dfrac{a}{b} \oplus \dfrac{c}{d} = \dfrac{a+c}{b+d} \quad \left(\mathrm{e.g.}\;\; \dfrac{\color{blue}{1}}{\color{red}{2}} \oplus \dfrac{\color{blue}{2}}{\color{red}{3}} = \dfrac{\color{blue}{3}}{\color{red}{5}}\right) \\ badc=b+da+c(e.g.2132=53)
你大概觉得写这篇文章的人莫名其妙,堆砌几个八竿子打不着的概念,完全不知所云。

但是假如我说,上面这些东西都和四圆相切有关,你愿意继续阅读吗?

随后的内容会用到反演变换与笛卡尔定理,如果你对二者的概念和性质感到陌生,可以先看看此系列的前两篇文章:

进入正题前,再简单整理一下我们之前探索“四圆相切问题”时得到的重要结论:

阿波罗尼奥斯定理(Apollonius’ Theorem) 对于给定的三个两两相切(但不公切于一点)的圆C_1, C_2, C_3,恰好存在两个圆与C_1, C_2, C_3均相切。
笛卡尔定理(Descartes’ Theorem) 假设四个两两相切的圆C_1, C_2, C_3, C_4的有向曲率分别为k_1, k_2, k_3, k_4,则它们满足关系:(k_1 + k_2 + k_3 + k_4)^2 = 2(k_1^2 + k_2^2 + k_3^2 + k_4^2) \
反演变换保圆性的完整内容 反演变换中的广义圆(圆与直线)保持形状不变,反形的大小和位置也可以由若干已知量简单导出。
(接上篇)

费了大力气推导完笛卡尔定理,先休息一下,看三个例子。

四、阿波罗尼奥斯垫(Apollonian Gasket)

假定我们已经有三圆相切的图案,即三个圆的曲率 k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3已知,带入笛卡尔定理:
( k 1 + k 2 + k 3 + k 4 ) 2 = 2 ( k 1 2 + k 2 2 + k 3 2 + k 4 2 ) (k_1 + k_2 + k_3 + k_4)^2 = 2(k_1^2 + k_2^2 + k_3^2 + k_4^2) \\ (k1+k2+k3+k4)2=2(k12+k22+k32+k42)
为了求出满足四圆相切的 k 4 k_4 k4 ,可以把上式整理一下:
k 4 2 − [ 2 ( k 1 + k 2 + k 3 ) ] k 4 + [ 2 ( k 1 2 + k 2 2 + k 3 2 ) − ( k 1 + k 2 + k 3 ) 2 ] = 0 k_4^2 - \left[2(k_1+k_2+k_3)\right] k_4 + \left[ 2(k_1^2 + k_2^2 + k_3^2) - (k_1+k_2+k_3)^2 \right] =0 \\ k42[2(k1+k2+k3)]k4+[2(k12+k22+k32)(k1+k2+k3)2]=0
它是一个关于 k 4 k_4 k4的一元二次方程,恰好有两个解,这与阿波罗尼奥斯定理的内容对应:有两个不同的圆能够将“三圆相切”补全为“四圆相切”。假设其中一个圆是 C_{4\text{-}1} ,那么四个圆 C_1,C_2,C_3,C_{4\text{-}1} 两两相切。

接下来从中取出三个圆,比如 C_2,C_3,C_{4\text{-}1} 。根据阿波罗尼奥斯定理,存在两个不同的圆与这三个圆相切,而其中一个我们已经知道了: C_1 ,另一个圆则是全新的,把它加入图案。

想象此过程无限执行下去:找出所有三圆相切的组合,对于每组中的三个圆来说,求出两个与它们都相切的第四个圆,并剔除我们已知的圆,把剩下的圆加入图案。最终得到的就是分形图案“阿波罗尼奥斯垫(Apollonian Gasket)”。下面是这类分形的构造过程演示,每一步中新加入的圆用黄色表示。简单来说,每次迭代都是在现有圆之间的空隙中嵌入另一个圆:

阿波罗尼奥斯垫的构造过程
https://www.zhihu.com/video/1216730289135042560
从任意一个三圆相切出发,都能构造出类似的分形。但是上面的例子还有一个特殊的地方:所有圆的曲率都是整数。乍一看可能让人感觉不可思议,但是了解笛卡尔定理之后,背后的原理其实格外简单。

假设四个圆 C_1,C_2,C_3,C_4 两两相切,并且它们的曲率 k_1,k_2,k_3,k_4 都是整数。现在从中选出三个圆,例如 C_1,C_2,C_3 ,找到两个与它们都相切的圆,那么它们的曲率都满足下面的方程:x^2 - \left[2(k_1+k_2+k_3)\right] x + \left[ 2(k_1^2 + k_2^2 + k_3^2) - (k_1+k_2+k_3)^2 \right] =0 \ 方程的根是多少呢?我们知道其中一个根必然是 k_4 ,这是已知圆 C_4 的曲率。根据韦达定理,另一个根就是 2(k_1+k_2+k_3)-k_4 ,这是未知圆的曲率。由于 k_1,k_2,k_3,k_4 都是整数,未知圆的曲率2(k_1+k_2+k_3)-k_4也是整数。因此,最初选择的四个圆都是整数曲率,那么构造分形时产生的新圆也必然是整数曲率!

现在的问题简单多了,只要找到“四个具有整数曲率又两两相切的圆”就行。巧合的是,例子实在是太丰富了:
( − 1 + 2 + 2 + 3 ) 2 = 2 [ ( − 1 ) 2 + 2 2 + 2 2 + 3 2 ] ( − 2 + 3 + 6 + 7 ) 2 = 2 [ ( − 2 ) 2 + 3 2 + 6 2 + 7 2 ] ( − 3 + 5 + 8 + 12 ) 2 = 2 [ ( − 3 ) 2 + 5 2 + 8 2 + 1 2 2 ] ( − 6 + 11 + 14 + 15 ) 2 = 2 [ ( − 6 ) 2 + 1 1 2 + 1 4 2 + 1 5 2 ] ⋮ (-1+2+2+3)^2 = 2\left[(-1)^2+2^2+2^2+3^2\right] \\ (-2+3+6+7)^2 = 2\left[(-2)^2+3^2+6^2+7^2\right] \\ (-3+5+8+12)^2 = 2\left[(-3)^2+5^2+8^2+12^2\right] \\ (-6+11+14+15)^2 = 2\left[(-6)^2+11^2+14^2+15^2\right] \\ \vdots (1+2+2+3)2=2[(1)2+22+22+32](2+3+6+7)2=2[(2)2+32+62+72](3+5+8+12)2=2[(3)2+52+82+122](6+11+14+15)2=2[(6)2+112+142+152]
这类特殊的阿波罗尼奥斯垫(Apollonian Gasket)有个名字,叫“Integral Apollonian Gasket”,其中的Integral指的就是分形中的圆具有整数曲率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code Writers

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值