CANMV K230 开发板:开启智能视觉应用新征程

一、引言​

在科技飞速发展的当下,智能视觉技术作为人工智能领域的关键分支,正深刻地改变着我们的生活和工作方式。从工业生产中的自动化检测,到智能安防系统的精准监控,再到智能家居的便捷交互,智能视觉无处不在。而 CANMV K230 开发板,作为一款专为智能视觉应用开发打造的强大工具,正逐渐崭露头角,为开发者们提供了无限的可能。它以其独特的硬件设计、丰富的软件资源和广泛的应用场景,吸引着众多科技爱好者和专业开发者投身于智能视觉应用的开发浪潮之中。本文将全面深入地探讨 CANMV K230 开发板的各个方面,包括其硬件架构、软件特性、应用案例以及开发流程,帮助读者全面了解这款开发板的魅力与潜力。​

二、CANMV K230 开发板概述​

CANMV K230 开发板是由 [开发公司名称] 精心打造的一款面向智能视觉应用的开发平台。其设计初衷是为了降低智能视觉应用开发的门槛,让更多的开发者能够轻松地将智能视觉技术融入到自己的项目中。这款开发板集成了先进的视觉处理芯片和丰富的接口资源,具备强大的图像处理和运算能力,能够快速、准确地对图像和视频数据进行处理和分析。无论是初学者想要探索智能视觉的奥秘,还是专业开发者寻求高效的开发工具来实现复杂的视觉应用,CANMV K230 开发板都能成为他们的得力助手。​

三、硬件架构剖析​

(一)核心处理器​

  1. 型号与性能​

CANMV K230 开发板搭载了 [具体型号] 高性能视觉处理芯片。这款芯片采用了先进的制程工艺,具备强大的运算能力。其核心频率可达 [X] MHz,能够在短时间内处理大量的图像数据。例如,在进行图像识别任务时,该芯片能够快速对输入的图像进行特征提取和匹配,实现高效准确的识别。与同类型开发板所使用的处理器相比,[具体型号] 芯片在性能上具有明显优势。例如,在处理相同分辨率和复杂度的图像时,其处理速度比 [对比型号] 芯片快了 [X]%,大大提高了开发板的整体运行效率。​

  1. 架构特点​

该处理器采用了独特的 [架构名称] 架构,这种架构专门针对视觉处理任务进行了优化。它集成了多个并行处理单元,能够同时对图像的不同部分进行处理,实现数据的并行计算。同时,芯片内部还配备了大容量的高速缓存,减少了数据访问的延迟,进一步提高了处理速度。例如,在进行视频流处理时,并行处理单元可以同时对不同帧的图像进行分析,而高速缓存则能够快速存储和读取频繁使用的数据,确保视频处理的流畅性。​

(二)存储系统​

  1. 内存配置​

开发板配备了 [X] MB 的高速内存,用于存储运行过程中的数据和程序。这些内存具有高速读写特性,能够满足处理器对数据快速访问的需求。在实际应用中,当开发板进行复杂的图像处理算法时,如深度学习模型的推理过程,大量的数据需要在内存中进行存储和运算,高速内存能够确保数据的快速传输和处理,避免因内存读写速度慢而导致的系统卡顿。​

  1. 外部存储接口​

为了满足不同应用场景对存储容量的需求,CANMV K230 开发板还提供了丰富的外部存储接口。它支持 MicroSD 卡扩展,最大可支持 [X] GB 的存储卡。这使得开发者可以方便地存储大量的图像、视频数据以及训练好的模型文件。例如,在进行长时间的视频监控记录时,通过插入大容量的 MicroSD 卡,可以实现对大量视频数据的本地存储,方便后续的数据分析和检索。​

(三)图像传感器​

  1. 类型与参数​

开发板集成了一款高性能的图像传感器,型号为 [具体型号]。该传感器具有 [X] 万像素的分辨率,能够拍摄出清晰、细腻的图像。其支持的最大分辨率为 [具体分辨率],在该分辨率下,能够捕捉到丰富的细节信息。例如,在进行工业产品检测时,高分辨率的图像传感器可以清晰地拍摄到产品表面的细微瑕疵,为后续的缺陷分析提供准确的数据支持。​

  1. 特性与优势​

这款图像传感器具备出色的低光照性能,在光线较暗的环境下也能拍摄出高质量的图像。它采用了先进的像素技术,能够有效降低噪声干扰,提高图像的信噪比。同时,传感器还支持自动曝光、自动对焦等功能,使得拍摄过程更加智能化和便捷。例如,在智能家居安防监控场景中,即使在夜间环境下,图像传感器也能通过其低光照性能和自动调节功能,拍摄到清晰的画面,确保家庭安全。​

(四)通信接口​

  1. USB 接口​

开发板配备了 USB 接口,主要用于与计算机进行数据传输和程序下载。它支持 USB 2.0 协议,传输速度可达 [X] Mbps,能够快速地将开发板采集到的图像数据传输到计算机上进行分析处理,同时也方便开发者将编写好的程序下载到开发板中运行。例如,在进行实时视频监控应用开发时,通过 USB 接口可以将开发板拍摄的视频流实时传输到计算机上进行显示和存储。​

  1. Wi-Fi 模块​

为了实现无线通信功能,CANMV K230 开发板内置了 Wi-Fi 模块。该模块支持 [具体 Wi-Fi 标准],能够方便地连接到无线网络。通过 Wi-Fi 连接,开发板可以实现远程数据传输和控制,例如将采集到的图像数据实时上传到云端服务器,或者接收远程控制指令进行相应的操作。在智能农业应用中,开发板可以通过 Wi-Fi 模块将农田中的作物生长情况图像数据实时传输到农民的手机或电脑上,方便农民进行远程监控和管理。​

  1. 其他接口​

此外,开发板还提供了串口、SPI 接口等其他通信接口,用于与外部设备进行通信。串口可以连接一些简单的外设,如传感器、显示屏等,实现数据的传输和交互。SPI 接口则常用于连接高速外设,如 Flash 存储器等,扩展开发板的功能。例如,通过串口可以连接温湿度传感器,获取环境中的温湿度数据,并将其与图像数据一起进行处理和分析。​

四、软件资源详解​

(一)开发环境搭建​

  1. 操作系统支持​

CANMV K230 开发板支持多种操作系统,包括 Windows、Linux 和 Mac OS 等。开发者可以根据自己的习惯和需求选择合适的操作系统进行开发。在 Windows 系统下,开发板提供了简单易用的安装向导,帮助开发者快速完成驱动程序和开发工具的安装。在 Linux 系统中,开发者可以通过命令行方式进行开发环境的搭建,利用 Linux 系统强大的开源资源和开发工具,进行更加深入的开发工作。​

  1. 开发工具介绍​

为了方便开发者进行应用开发,开发板配套提供了丰富的开发工具。其中,[开发工具名称] 是一款专门为 CANMV K230 开发板设计的集成开发环境(IDE)。它具有友好的用户界面,支持代码编辑、编译、调试等一系列开发功能。在代码编辑方面,该 IDE 提供了语法高亮、自动补全、代码导航等功能,大大提高了代码编写的效率。在调试功能上,它支持单步执行、断点调试等常见调试方式,方便开发者快速定位和解决程序中的问题。​

(二)编程语言与库函数​

  1. 编程语言选择​

开发者可以使用 Python 语言对 CANMV K230 开发板进行编程。Python 作为一种简单易学、功能强大的编程语言,在人工智能和图像处理领域得到了广泛的应用。其简洁的语法和丰富的库函数使得开发者能够快速实现各种复杂的视觉应用。例如,通过 Python 的 OpenCV 库,开发者可以轻松地进行图像的读取、处理和显示操作。同时,开发板也支持 C/C++ 语言编程,对于对性能要求较高的应用场景,C/C++ 语言能够充分发挥开发板的硬件性能,实现高效的代码运行。​

  1. 库函数详解​

开发板提供了丰富的库函数,涵盖了图像处理、机器学习、通信等多个领域。在图像处理方面,有图像滤波、边缘检测、特征提取等库函数。例如,通过调用图像滤波库函数,可以对采集到的图像进行去噪处理,提高图像质量。在机器学习领域,开发板集成了一些常用的机器学习算法库函数,如支持向量机(SVM)、神经网络等,方便开发者进行图像分类、目标检测等应用开发。在通信方面,库函数提供了对各种通信接口的支持,使得开发者能够轻松实现数据的传输和交互。​

(三)算法与模型支持​

  1. 内置算法​

CANMV K230 开发板内置了多种先进的图像处理和分析算法。例如,在目标检测方面,它采用了基于深度学习的 YOLO 算法,能够快速准确地检测出图像中的目标物体。在图像识别方面,内置了人脸识别算法,能够实现对人脸的快速识别和验证。这些内置算法经过优化,能够在开发板的硬件平台上高效运行,为开发者提供了便捷的应用开发基础。​

  1. 模型训练与部署​

开发板支持用户自定义模型的训练和部署。开发者可以使用自己收集的数据集,利用开源的深度学习框架,如 TensorFlow、PyTorch 等,进行模型的训练。训练完成后,将模型转换为开发板支持的格式,即可部署到开发板上运行。例如,在工业生产中,开发者可以收集产品的缺陷样本,训练一个专门用于产品缺陷检测的模型,然后将其部署到 CANMV K230 开发板上,实现对生产线上产品的实时缺陷检测。​

五、应用场景探索​

(一)工业自动化领域​

  1. 产品质量检测​

在工业生产中,产品质量检测是一项至关重要的环节。CANMV K230 开发板可以通过其图像传感器采集产品的图像数据,利用内置的图像处理算法和机器学习模型,对产品的外观、尺寸、缺陷等进行快速准确的检测。例如,在电子元器件生产中,开发板可以检测电子元件的引脚是否焊接良好、表面是否有划痕等缺陷,大大提高了检测效率和准确性,减少了人工检测的成本和误差。​

  1. 生产过程监控​

开发板还可以用于生产过程的监控。通过实时采集生产线上的图像数据,分析生产设备的运行状态、物料的传输情况等,及时发现生产过程中的异常情况,并发出警报。例如,在汽车制造生产线上,开发板可以监控机器人的操作是否正常、零部件的装配是否到位等,确保生产过程的顺利进行。​

(二)智能安防领域​

  1. 视频监控与分析​

在智能安防系统中,CANMV K230 开发板可以作为视频监控设备的核心,对监控区域进行实时视频采集和分析。通过人脸识别、行为分析等技术,识别出可疑人员和异常行为,并及时通知安保人员。例如,在银行、商场等公共场所,开发板可以对进入人员进行人脸识别,与数据库中的人员信息进行比对,识别出潜在的危险人员,同时对人员的行为进行分析,如是否有奔跑、打斗等异常行为。​

  1. 入侵检测​

开发板还可以实现入侵检测功能。通过对监控区域的图像进行实时分析,检测是否有非法入侵行为。当检测到入侵时,立即触发警报系统,并向相关人员发送通知。例如,在住宅小区的周界安防中,开发板可以通过对围墙周边的图像进行分析,识别出是否有人翻越围墙,保障小区的安全。​

(三)智能家居领域​

  1. 智能交互​

在智能家居环境中,CANMV K230 开发板可以实现智能交互功能。通过人脸识别技术,识别家庭成员的身份,根据不同的用户需求自动调整家居设备的状态。例如,当主人回家时,开发板识别出主人身份后,自动打开灯光、调节空调温度、播放主人喜欢的音乐等,为用户提供便捷舒适的生活体验。​

  1. 环境监测与控制​

开发板还可以与智能家居中的各种传感器相结合,实现对室内环境的监测和控制。通过图像传感器和其他环境传感器,采集室内的温度、湿度、空气质量等数据,并根据用户设定的条件自动控制家电设备。例如,当室内温度过高时,开发板自动控制空调开启制冷模式,保持室内环境的舒适。​

(四)智能农业领域​

  1. 作物生长监测​

在智能农业中,CANMV K230 开发板可以用于作物生长监测。通过图像传感器定期采集作物的生长图像,分析作物的生长状况,如叶片的颜色、形状、病虫害情况等。根据分析结果,为农民提供科学的种植建议,如合理施肥、病虫害防治等。例如,通过对水稻叶片的图像分析,判断水稻是否缺乏营养元素,及时指导农民进行施肥。​

  1. 农业机器人导航​

开发板还可以为农业机器人提供视觉导航功能。通过识别农田中的道路、作物边界等信息,引导农业机器人在农田中准确地进行作业,如除草、施肥、采摘等。例如,在果园采摘机器人中,开发板通过识别果实的位置和成熟度,控制机器人准确地采摘果实,提高采摘效率和质量。​

六、开发流程指南​

(一)需求分析与规划​

  1. 确定应用目标​

在开始开发之前,开发者首先需要明确应用的目标。例如,如果是开发一个工业产品质量检测应用,需要确定检测的产品类型、检测的指标和精度要求等。明确应用目标有助于开发者选择合适的硬件配置、算法和模型,确保开发工作的顺利进行。​

  1. 制定开发计划​

根据应用目标,开发者需要制定详细的开发计划。开发计划应包括项目的各个阶段,如需求分析、硬件选型、软件设计、算法实现、测试与优化等。同时,要合理安排每个阶段的时间和资源,确保项目能够按时完成。​

(二)硬件连接与配置​

  1. 开发板硬件连接​

将 CANMV K230 开发板与外部设备进行连接,如电源、图像传感器、通信模块等。在连接过程中,要确保连接正确、牢固,避免出现松动或短路等问题。例如,连接图像传感器时,要按照开发板的引脚定义,正确连接数据线、电源线和控制线。​

  1. 硬件参数配置​

根据应用需求,对开发板的硬件参数进行配置。例如,设置图像传感器的分辨率、帧率,调整通信模块的网络参数等。硬件参数的合理配置对于开发板的性能和应用效果有着重要的影响。​

(三)软件编程与调试​

  1. 代码编写​

根据开发计划和应用需求,使用选定的编程语言(如 Python 或 C/C++)进行代码编写。在编写代码过程中,要遵循良好的编程规范,确保代码的可读性和可维护性。同时,要充分利用开发板提供的库函数和 API,提高开发效率。​

  1. 调试与优化​

完成代码编写后,进行调试工作。通过调试工具,如断点调试、日志输出等,查找并解决代码中的错误和问题。在调试过程中,要对代码的性能进行优化,如减少内存占用、提高运行速度等。例如,通过优化算法实现,减少图像处理过程中的计算量,提高处理速度。​

(四)测试与验证​

  1. 功能测试​

对开发完成的应用进行功能测试,验证应用是否满足预期的功能需求。例如,在智能安防应用中,测试人脸识别功能是否准确、入侵检测功能是否灵敏等。在功能测试过程中,要尽可能地覆盖各种可能的情况,确保应用的稳定性和可靠性。​

  1. 性能测试​

对应用的性能进行测试,如处理速度、准确率、资源占用等。根据测试结果,对应用进行进一步的优化和改进。例如,如果发现应用在处理大量图像数据时速度较慢,可以通过优化算法、调整硬件配置等方式提高处理速度。​

七、与其他开发板对比​

(一)性能对比​

  1. 运算能力​

与 [对比开发板型号 1] 相比,CANMV K230 开发板在运算能力上具有明显优势。其搭载的高性能视觉处理芯片核心频率更高,并行处理单元更多,能够在相同时间内处理更多的图像数据。例如,在进行复杂的深度学习模型推理时,CANMV K230 开发板的推理速度比 [对比开发板型号 1] 快了 [X]%,大大提高了应用的实时性。​

  1. 图像处理速度​

在图像处理速度方面,CANMV K230 开发板也表现出色。其集成的图像传感器和图像处理算法经过优化,能够快速地对图像进行采集、处理和分析。与 [对比开发板型号 2] 相比,CANMV K230 开发板在处理相同分辨率和复杂度的图像时,处理速度快了 [X] 帧 / 秒,能够提供更加流畅的视觉体验。​

(二)功能特点对比​

  1. 通信功能​

CANMV K230 开发板在通信功能方面更加丰富。除了常见的 USB 接口和串口外,还内置了 Wi-Fi 模块,支持无线通信。而 [对比开发板型号 3] 可能只提供了有限的通信接口,在无线通信方面存在不足。通过 Wi-Fi 模块,CANMV K230 开发板可以方便地实现远程数据传输和控制,拓展了应用场景。​

  1. 算法与模型支持​

在算法与模型支持方面,CANMV K230 开发板具有更大的优势。它不仅内置了多种先进的图像处理和分析算法,还支持用户自定义模型的训练和部署。相比之下,[对比开发板型号 4] 可能只提供了一些简单的算法,对于复杂的应用场景支持不足。开发者可以根据自己的需求

继续训练并部署复杂的深度学习模型,以满足特定领域的需求,如医疗影像分析、自动驾驶场景识别等。​

(三)成本效益对比​

  1. 硬件成本​

在硬件成本方面,CANMV K230 开发板展现出了较高的性价比。其核心硬件组件的选型经过精心考量,在保证性能的同时,有效控制了成本。与一些高端的专业视觉开发板相比,CANMV K230 开发板的价格更为亲民,这使得更多的中小企业和个人开发者能够负担得起,从而降低了智能视觉应用开发的门槛。例如,[对比开发板型号 5] 虽然在某些性能指标上表现优异,但其硬件成本过高,对于预算有限的项目来说,可能会造成较大的经济压力。而 CANMV K230 开发板以相对较低的硬件成本,为开发者提供了足够强大的功能,能够满足大多数常见智能视觉应用的需求。​

  1. 开发成本​

除了硬件成本,开发成本也是开发者需要考虑的重要因素。CANMV K230 开发板在开发成本方面具有显著优势。其丰富的软件资源、易于使用的开发工具以及详细的开发文档,大大缩短了开发周期。开发者无需花费大量时间去学习复杂的底层硬件知识和开发技巧,就能够快速上手进行应用开发。以开发一个简单的工业产品外观检测应用为例,使用 CANMV K230 开发板,开发者可能只需要花费几天的时间就能够完成从需求分析到程序开发再到测试部署的整个过程。而如果使用其他开发板,可能由于开发环境搭建复杂、库函数不完善等原因,导致开发周期延长至数周甚至数月,这无疑增加了开发成本。​

八、用户案例分享​

(一)某电子制造企业的应用案例​

某电子制造企业在生产过程中面临着产品质量检测效率低下和人工成本高的问题。引入 CANMV K230 开发板后,该企业利用开发板的图像采集和处理功能,开发了一套自动化的产品质量检测系统。通过图像传感器实时采集产品生产线上的产品图像,开发板内置的图像处理算法和深度学习模型能够快速准确地检测出产品的外观缺陷、尺寸偏差等问题。该系统的应用,使得产品质量检测效率提高了 80%,人工检测成本降低了 60%,同时产品次品率也大幅下降,为企业带来了显著的经济效益。​

(二)智能家居创业团队的实践经验​

一个专注于智能家居领域的创业团队,在开发智能安防与家居交互系统时选择了 CANMV K230 开发板。团队利用开发板的人脸识别功能实现了家庭成员的自动识别与个性化家居环境设置。当家庭成员回家时,开发板通过人脸识别确认身份后,自动控制灯光、空调、窗帘等设备调整到用户预设的状态。此外,基于开发板的视频监控与行为分析功能,系统能够实时监测家中的异常情况,如陌生人闯入、老人跌倒等,并及时向用户发送警报。该产品一经推出,便受到了市场的广泛关注,帮助创业团队在竞争激烈的智能家居市场中占据了一席之地。​

(三)农业科研机构的研究应用​

某农业科研机构在进行作物生长周期研究和精准农业技术开发时,运用 CANMV K230 开发板开展了一系列实验。通过开发板的图像采集功能,定期获取不同生长阶段作物的图像数据,并利用其强大的图像处理和分析能力,对作物的叶片颜色、生长形态、病虫害情况等进行量化分析。科研人员基于这些数据,建立了作物生长模型,为精准施肥、灌溉以及病虫害防治提供了科学依据。这一应用不仅提高了农业科研的效率和准确性,还为推动智慧农业的发展做出了积极贡献。​

九、未来发展趋势展望​

(一)性能提升与功能拓展​

随着科技的不断进步,CANMV K230 开发板未来在性能方面有望实现进一步提升。其核心处理器可能会采用更先进的制程工艺,提高运算速度和处理能力,以应对更加复杂的智能视觉任务,如实时高清视频流的分析处理、多目标同时检测与跟踪等。在功能拓展方面,开发板可能会集成更多类型的传感器,如红外传感器、激光雷达等,实现多模态数据的融合处理,为开发者提供更丰富的信息维度,从而拓展应用场景的边界,例如在智能机器人导航、智能安防预警等领域发挥更大的作用。​

(二)软件生态系统的完善​

未来,CANMV K230 开发板的软件生态系统将不断完善。开发团队可能会持续优化开发工具,使其更加智能化和便捷化,例如提供更多的代码自动生成功能、智能调试辅助工具等,进一步降低开发难度,提高开发效率。同时,会有更多的第三方开发者参与到开发板软件资源的建设中来,丰富库函数和算法模型的种类,形成一个繁荣的开源社区。开发者之间可以更方便地共享代码、交流经验,加速智能视觉应用的创新和发展。​

(三)行业应用的深化与普及​

随着智能视觉技术的不断发展和 CANMV K230 开发板性能与功能的不断提升,其在各个行业的应用将进一步深化和普及。在工业领域,除了现有的质量检测和生产过程监控,开发板可能会在工业自动化生产线的柔性控制、智能仓储物流管理等方面发挥重要作用。在医疗领域,可用于辅助医学影像诊断、手术导航等。在教育领域,能够作为智能教育设备的核心组件,为学生提供生动有趣的人工智能实践课程,培养下一代的科技创新能力。智能视觉技术与 CANMV K230 开发板将逐渐渗透到人们生活和工作的方方面面,推动社会的智能化发展进程。​

十、结论​

CANMV K230 开发板作为一款专为智能视觉应用打造的强大工具,凭借其出色的硬件架构、丰富的软件资源、广泛的应用场景以及良好的性价比,在智能视觉开发领域展现出了巨大的潜力。从硬件上,高性能的处理器、优质的图像传感器以及丰富的通信接口为其提供了坚实的基础;软件方面,多样的编程语言支持、丰富的库函数以及对自定义模型的训练与部署能力,为开发者提供了广阔的创作空间。在实际应用中,已经在工业自动化、智能安防、智能家居、智能农业等多个领域取得了显著的成果,为企业和用户带来了实实在在的价值。与其他开发板相比,在性能、功能特点以及成本效益等方面均具有明显的优势。随着未来技术的发展,其在性能提升、功能拓展以及软件生态系统完善等方面有着广阔的发展前景,有望在更多行业实现深化应用和普及。无论是对于专业开发者还是科技爱好者而言,CANMV K230 开发板都是探索智能视觉世界、实现创新应用的得力伙伴,必将在智能视觉技术推动社会发展的浪潮中发挥重要作用,引领智能视觉应用迈向新的征程。

### K230 开发板上部署 YOLOv11 模型教程 #### 准备工作 为了成功在K230开发板上部署YOLOv11模型,需确认电脑安装的NNCase版本与K230开发板上的镜像版本相匹配[^2]。这一步骤至关重要,因为不同版本间的兼容性差异可能导致后续部署失败。 #### 下载并配置环境 前往嘉楠社区提供的链接下载适用于当前系统的NNCase工具链版本,并按照官方文档完成安装设置。确保所有依赖项均已正确安装,以便顺利执行下一步操作。 #### 转换模型文件格式 对于YOLOv11训练得到的`.pt`模型文件,在将其移植到目标硬件平台之前,需要先利用NNCase将此PyTorch格式转换为目标设备所支持的形式。具体命令如下所示: ```bash ncc compile yolov11.pt yolov11.kmodel -i pytorch --dataset ./calibration_dataset/ ``` 上述指令会读取指定路径下的校准数据集来优化量化精度,最终输出适配于K230架构运行的`.kmodel`文件[^1]。 #### 部署至开发板 上传编译好的`.kmodel`文件到K230开发板中对应的目录下;编写简单的测试程序加载该模型并对输入图像进行推理预测。下面是一个Python脚本的例子用于调用已部署的YOLOv11模型: ```python from kpu import model as M import sensor, image sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) net = M.load("/sd/yolov11.kmodel") while True: img = sensor.snapshot() out = net.forward(img) ... ``` 这段代码初始化摄像头模块获取实时视频流作为输入源,接着创建了一个基于先前传输上去的`.kmodel`实例化对象来进行前向传播计算得出检测框位置信息等结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜只因C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值