频率响应
1. 傅里叶变换基础
1.1 基本概念
不同于信号系统学习的连续时间的傅里叶变换,这里使用的是离散时间傅里叶变换(DTFT)。离散时间傅里叶变换(DTFT)把信号或滤波器从时域变换到频域,用于研究信号或滤波器的频率特性。
对于信号而言,DTFT提供的信息称为信号的频谱。
对于滤波器的情况,DTFT得到的信息称为滤波器的频率响应,包括两部分:幅度响应和相位响应。其中幅度响应给出了滤波器的形状,通过它可以深入了解滤波器的工作情况。
1.2 重要特性
时延性:
周期性:
2. 频率响应及其他形式
2.1 频率响应和差分方程
差分方程通常为:
∑ k = 0 N a k y [ n − k ] = ∑ k = 0 M b k x [ n − k ] \sum_{k=0}^{N}a_{k}y[ n - k ] = \sum_{k=0}^{M}b_{k}x[ n - k ] k=0∑Naky[n−k]=k=0∑Mbkx[n−k]
或者是
a 0 y [ n ] + a 1 y [ n − 1 ] + a 2 y [ n − 2 ] + ⋯ + a N y [ n − N ] = b 0 x [ n ] + b 1 x [ n − 1 ] + b 2 x [ n − 2 ] + ⋯ + b M x [ n − M ] \begin{aligned}a_{0}y[ n ]&+ a_{1}y[ n-1 ]+ a_{2}y[ n-2 ]+\cdots+ a_{N}y[ n-N ]\\&= b_{0}x[ n ] + b_{1}x[ n - 1] + b_{2}x[ n - 2 ] + \cdots + b_{M}x[ n - M ]\end{aligned} a0y[n]+a1y[n−1]+a2y[n−2]+⋯+aNy[n−N]=b0x[n]+b1x[n−1]+b2x[n−2]+⋯+bMx[n−M]
将其转换到频域:
a 0 Y ( Ω ) + a 1 e − j Ω Y ( Ω ) + a 2 e − j 2 Ω Y ( Ω ) + ⋯ + a N e − j N Ω Y ( Ω ) = b 0 X ( Ω ) + b 1 e − j Ω X ( Ω ) + b 2 e − j 2 Ω X ( Ω ) + ⋯ + b M e − j M Ω X ( Ω ) \begin{aligned}a_{0}Y(\Omega) + a_{1} \mathrm{e}^{-j\Omega}Y(\Omega) + a_{2}\mathrm{e}^{-j2\Omega}Y(\Omega) + \cdots + a_{N}\mathrm{e}^{-jN\Omega}Y(\Omega)\\=b_{0}X(\Omega) + b_{1}\mathrm{e}^{-j\Omega}X(\Omega) + b_{2}\mathrm{e}^{-j2\Omega}X(\Omega) + \cdots + b_{M}\mathrm{e}^{-jM\Omega}X(\Omega)\end{aligned} a0Y(Ω)+a1e−jΩY(Ω)+a2e−j2ΩY(Ω)+⋯+aNe−jNΩY(Ω)=b0X(Ω)+b1e−jΩX(Ω)+b2e−j2ΩX(Ω)+⋯+bMe−jMΩX(Ω)
提取公因式可得输出与输入之比:
H ( Ω ) = Y ( Ω ) X ( Ω ) = b 0 + b 1 e − j Ω + b 2 e − j 2 Ω + ⋯ + b M e − j M Ω a 0 + a 1 e − j Ω + a 2 e − j 2 Ω + ⋯ + a N e − j N Ω H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{b_{0} + b_{1} \mathrm{e}^{-j\Omega} + b_{2} \mathrm{e}^{-j2\Omega} + \cdots + b_{M} \mathrm{e}^{-jM\Omega}}{a_{0} + a_{1} \mathrm{e}^{-j\Omega} + a_{2} \mathrm{e}^{-j2\Omega} + \cdots + a_{N} \mathrm{e}^{-jN\Omega}} H(Ω)=X(Ω)Y(Ω)=a0+a1e−jΩ+a2e−j2Ω+⋯+aNe−jNΩb0+b1e−jΩ+b2e−j2Ω+⋯+bMe−jMΩ
其表示滤波器的频率响应。
2.2 频率响应和脉冲函数
当滤波器的输入为脉冲函数时,其DTFT为:
X ( Ω ) = ∑ n = − ∞ ∞ δ [ n ] e − j n Ω = 1 X(\Omega) = \sum_{n=-\infty}^{\infty}\delta[ n ]\mathrm{e}^{-jn\Omega} = 1 X(Ω)=n=−∞∑∞δ[n]e−jnΩ=1
则其脉冲响应的DTFT为:
Y ( Ω ) = ∑ n = − ∞ ∞ h [ n ] e − j n Ω Y(\Omega) = \sum_{n=-\infty}^{\infty}h\bigl[ n \bigr]\mathrm{e}^{-jn\Omega} Y(Ω)=n=−∞∑∞h[n]e−jnΩ
3. 频率响应和滤波器形状
3.1 滤波器对正弦输入的作用
3.2 幅度响应和相位响应
3.3 模拟频率和数字频率
数字滤波器的形状( ∣ H ( Ω ) ∣ \mid H(\Omega)\mid ∣H(Ω)∣ )设计可以不依赖采样频率,但所选的采样频率将影响滤波器输入频率的范围。当采样速率已知时,频率轴可用模拟频率 f f f代替数字频率 Ω \Omega Ω,这样将更容易了解滤波器的特性。
Ω = 2 π f f S ⟺ f = Ω f S 2 π \Omega = 2\pi \frac{f}{f_{S}}\quad\Longleftrightarrow\quad f = \Omega \frac{f_{S}}{2\pi} Ω=2πfSf⟺f=Ω2πfS
数字频率和模拟频率的频率响应图是一样的,只不过下标不同。