自动控制原理学习笔记(十)—— 频率响应

前几节笔记如下:

自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客

自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客

自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客

自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客

自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客

自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客

自动控制原理学习笔记(七)—— 离散系统函数-CSDN博客

自动控制原理学习笔记(八)—— 离散系统的传递函数和极点-CSDN博客

自动控制原理学习笔记(九)—— 从离散系统到连续系统-CSDN博客

一、频率响应简介

迄今为止,我们主要研究系统在阶跃信号下的响应,即阶跃响应。如下图所示:

现在我们令输入信号为正弦信号,通过分析系统的频率响应从而分析系统的特征。该方法也称为频域分析法。

如果一个连续系统的方框图只包括比较点、增益、微分或积分模块,则该系统在正弦输入信号下的响应信号也一定是正弦信号,且该输出信号:

  • 频率与输入信号相同;
  • 幅值和相位与输入信号不同。

 如下图所示:

关于响应信号性质的证明略,具体证明可以通过分析连续系统的特征方程。

二、欧拉公式

著名数学家欧拉在 1748 年提出了数学家最著名、最伟大、最美丽的公式之一 —— 欧拉公式。欧拉公式构建了实域和复域之间的桥梁,具体形式为:

e^{j\theta }=\cos \theta +j\sin \theta

当 \theta =\pi 时,该公式可化简为欧拉恒等式:

e^{j\pi }+1=0

该等式将数学里最重要的几个常数联系到了一起:两个超越数:自然对数的底 e ,圆周率 \pi ,两个单位:虚数单位 j 和自然数的单位 1 ,以及数学里常见的 0 。因此,数学家们评价它是 “上帝创造的公式,我们只能看它而不能理解它” 。

通过欧拉公式,我们又可以多一种方式来求解微分方程,以如下微分方程为例:

\frac{\mathrm{d} ^{2}f(\theta )}{\mathrm{d} \theta ^{2}}+f(\theta )=0

令 f_{1}(\theta )=A\cos (\alpha \theta )+B\sin (\beta \theta ) ,则

\frac{\mathrm{d}f_{1}(\theta )}{\mathrm{d} \theta }=-\alpha A\sin (\alpha \theta )+\beta B\cos (\beta \theta )

\frac{\mathrm{d}^{2}f_{1}(\theta )}{\mathrm{d} \theta^{2} }=-\alpha^{2} A\cos (\alpha \theta )-\beta^{2} B\sin (\beta \theta )

代入到微分方程中,于是 \alpha =\beta =1 ,故

f_{1}(\theta )=A\cos \theta +B\sin\theta

令 f_{2}(\theta )=Ce^{\gamma \theta } ,则

\frac{\mathrm{d}f_{2}(\theta )}{\mathrm{d} \theta }=\gamma Ce^{\gamma \theta }

\frac{\mathrm{d}^{2}f_{2}(\theta )}{\mathrm{d} \theta^{2} }=\gamma^{2} Ce^{\gamma \theta }

代入到微分方程中,于是 \gamma =\pm j ,故

f_{2}(\theta )=Ce^{\pm j \theta }

如果我们令 f_{2}(\theta )=e^{j \theta } ,则 f_{2}(0)=1 且 {f_{2}}'(0)=j 。若 f_{1}(\theta )=f_{2}(\theta ) 。则 A=1 且 B=j ,即:

e^{j\theta }=\cos \theta +j\sin \theta

由于虚数 j 的算术性质与其他任何实数一样,欧拉公式也遵循指数函数的麦克劳林展开:

以自然对数的底 e 为底的指数函数为例,对其进行麦克劳林展开:

e^{\theta }=1+\theta +\frac{\theta^{2}}{2!}+\frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{\theta^{5}}{5!}+\frac{\theta^{6}}{6!}+\frac{\theta^{7}}{7!}+...

于是:

e^{j\theta }=1+j\theta +\frac{j^{2}\theta^{2}}{2!}+\frac{j^{3}\theta^{3}}{3!}+\frac{j^{4}\theta^{4}}{4!}+\frac{j^{5}\theta^{5}}{5!}+\frac{j^{6}\theta^{6}}{6!}+\frac{j^{7}\theta^{7}}{7!}+...          

=1+j\theta -\frac{\theta^{2}}{2!}-\frac{j\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{j\theta^{5}}{5!}-\frac{\theta^{6}}{6!}-\frac{j\theta^{7}}{7!}+...                

=\underset{\cos \theta }{\underbrace{(1 -\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+...)}}+j\underset{\sin \theta }{\underbrace{(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+...)}}

这也是欧拉公式的其中一种推导方法。

在 1799 年,卡斯帕尔·韦塞尔首次将复数用复平面上的点来表示,而复数的发现则是在 1500 年前后。假设某复数为 c=a+jb ,则它在复平面上如下图所示:

复数是 “二维” 的。与实数不同,复数在复轴方向(即 j=\sqrt{-1} 方向)上仍有对应的分量。这也为我们认识复数提供了新的角度。

于是,欧拉公式可以看作是某复数分别在极坐标和直角坐标系下的表示,如下图所示:

我们还可以由上图得出以下结论:复数加法可以类比的向量加法,复数乘法可以类比向量旋转。

令 c_{1} 和 c_{2} 分别表示两个复数:

c_{1}=a_{1}+jb_{1}

c_{2}=a_{2}+jb_{2}

于是,

c_{1}+c_{2}=(a_{1}+jb_{1})+(a_{2}+jb_{2})=(a_{1}+a_{2})+j(b_{1}+b_{2})

将一个数乘以一个复数可以看作将该数在复平面内旋转。例如某数乘以 j 后,

  • 由 1 变成 j ;
  • 由 j 变成 -1 ;
  • 由 -1 变成 -j ;
  • 由 -j 变成 1 ;

即逆时针旋转 \pi /2 ,如下图所示:

        

        

例 1 :令 c 表示一个复数,在复平面下用一个点来表示,如下图所示,其中单位圆的半径为 1 。

        (1)下列图像中,哪个表示 jc ?

        (2)下列图像中,哪个表示 Im(c) (即 c 的虚部)?

        (3)下列图像中,哪个表示 1/c ?

答案:(1)G        (2)F        (3)A

三、频率响应

回到开头对频率响应的介绍。我们用两张图来刻画频率响应:一张以 \omega =2\pi f 为横坐标( f 为频率,单位赫兹),幅值 M 为纵坐标;另一张以 \omega 为横坐标,相角 \phi 为纵坐标。

举个例子,若系统由如下微分方程表示:

\frac{\mathrm{d} ^{2}y(t)}{\mathrm{d} t^{2}}+\frac{\mathrm{d} y(t)}{\mathrm{d} t}+\frac{37}{4}y(t)=5x(t)

x(t)=\cos (\omega t)\rightarrow y(t)=M(\omega )\cos (\omega t+\phi (\omega))

该系统的频率响应图像如下图所示:

由此可见,频域分析法是分析系统的其中一个重要方法。

我们再以质量-弹簧系统为例,如下图所示:

当输入频率很小时,输出信号几乎与输入信号相同;

当输入频率接近某个中间值时,输出信号会变得非常大,该现象也称为共振;

当输入频率很大时,输出信号幅值反而小。

四、使用传递函数计算频率响应

虽然我们可以将输入信号 x(t)=\cos (\omega t) 代入到微分方程中来计算系统的频率响应 y(t) ,但我们可以使用更简单的方法来计算,例如前几章讲过的传递函数。

我们以 e^{st} 为输入信号,由传递函数的定义得:

我们将 s=j\omega 代入,于是:

同理, 我们将 s=-j\omega 代入:

运用欧拉公式将上面两式合并,得到余弦信号对应的频率响应:

如果某系统只包含比较点、增益或微分(或积分)等环节,则该系统的传递函数一定可以用一个有理函数来表示(详见上一章笔记):

H(s)=\frac{\sum_{k}^{}a_{k}s^{k}}{\sum_{k}^{}b_{k}s^{k}}

H(j\omega )=\frac{\sum_{k}^{}a_{k}(j\omega )^{k}}{\sum_{k}^{}b_{k}(j\omega )^{k}}

H(-j\omega )=\frac{\sum_{k}^{}a_{k}(-j\omega )^{k}}{\sum_{k}^{}b_{k}(-j\omega )^{k}}=H^{*}(j\omega )(即共轭复数)

由于复数与其共轭复数的和为实数,故我们将余弦信号对应的频率响应进行化简:

y(t)=\frac{1}{2}(H(j\omega )e^{j\omega t}+H(-j\omega )e^{-j\omega t})  

=Re\left \{ H(j\omega )e^{j\omega t} \right \}                  

=Re\left \{ \left | H(j\omega ) \right |e^{j\angle H(j\omega )}e^{j\omega t} \right \}

= \left | H(j\omega ) \right |Re\left \{e^{j\omega t+j\angle H(j\omega )} \right \}

y(t)=\left | H(j\omega ) \right |\cos (\omega t+\angle H(j\omega ))

其中,M(\omega )=\left | H(j\omega ) \right | ,\phi (\omega )=\angle H(j\omega ) 。

五、运用向量分析传递函数

传递函数 H(s) 在点 s=s_{0} 处的值可以采用向量进行分析。

我们将传递函数的分子和分母进行因式分解,使其化简到能够求解出零点和极点为止:

H(s_{0})=K\frac{(s_{0}-z_{0})(s_{0}-z_{1})(s_{0}-z_{2})...}{(s_{0}-p_{0})(s_{0}-p_{1})(s_{0}-p_{2})...}

传递函数分子 / 分母中的每一项都表示在复平面内从零点 / 极点(图中为零点 z_{0} )到 s_{0} 的一个向量。

传递函数的模可以用这些向量的模来表示。

\left | H(s_{0}) \right |=\left | K \right |\frac{\left |s_{0}-z_{0} \right |\left | s_{0}-z_{1} \right |\left | s_{0}-z_{2} \right |...}{\left |s_{0}-p_{0} \right |\left | s_{0}-p_{1} \right |\left | s_{0}-p_{2} \right |...}

传递函数在复平面上的角度可以用这些向量的角度来表示。

\angle H(s_{0})=\angle K+\angle (s_{0}-z_{0})+\angle (s_{0}-z_{1})+...-\angle (s_{0}-p_{0})-\angle (s_{0}-p_{1})-...

当 s=j\omega 时,系统的频率响应等于 H(s) ,于是:

H(j\omega )=K\frac{(j\omega-z_{0})(j\omega-z_{1})(j\omega-z_{2})...}{(j\omega-p_{0})(j\omega-p_{1})(j\omega-p_{2})...}

\left | H(j\omega ) \right |=\left | K \right |\frac{\left |j\omega-z_{0} \right |\left | j\omega-z_{1} \right |\left |j\omega-z_{2} \right |...}{\left |j\omega-p_{0} \right |\left | j\omega-p_{1} \right |\left | j\omega-p_{2} \right |...}

\angle H(j\omega )=\angle K+\angle (j\omega-z_{0})+...-\angle (j\omega-p_{0})-\angle (j\omega-p_{1})-...

令某系统的传递函数为 H(s)=s-z_{1} ,该系统幅值与相角随 s 的变化如下图所示:

再令某系统的传递函数为 H(s)=\frac{9}{s-p_{1}} ,该系统幅值与相角随 s 的变化如下图所示:

再令某系统的传递函数为 H(s)=3\frac{s-z_{1}}{s-p_{1}} ,该系统幅值与相角随 s 的变化如下图所示:

我们想分析质量-弹簧系统频率响应的幅值和相角,先写出该系统的传递函数:

F=Ma=M\ddot{y}(t)=K(x(t)-y(t))-B\dot{y}(t)

M\ddot{y}(t)+B\dot{y}(t)+Ky(t)=Kx(t)

(s^{2}M+sB+K)Y(s)=KX(s)

H(s)=\frac{K}{s^{2}M+sB+K}

令弹簧的劲度系数 K=15 ,我们绘制图像如下:

例 2 :假设某离散系统和连续系统都有相同的极点 \frac{1+j}{2} 和 \frac{1-j}{2} ,它们的传递函数分别为 H(z)=\frac{1}{z^{2}-z-\frac{1}{2}} 和 H(s)=\frac{1}{s^{2}-s-\frac{1}{2}} 。

        则下列说法中正确的为:

        A. 两系统的单位脉冲响应均振荡

        B. 两系统均稳定

        C. 两系统的稳态解均收敛到零

        D. 上面三个选项都不对

答案:A

例题 2 也正好揭示了拉普拉斯变换和 Z 变换的异同(虽然我们并未提过,但前几章我们在系统传递函数的分析中却无时无刻使用到它们,可以参考奥本海姆《信号与系统》P417 ~ P522)。下一讲是第七至第九章笔记内容的整合,我们会对离散系统和连续系统进行整体梳理,具体内容详见下回分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值