前几节笔记如下:
自动控制原理学习笔记(一)—— 控制介绍,一阶离散系统-CSDN博客
自动控制原理学习笔记(二)—— 一阶离散系统的通解,稳定性和收敛性-CSDN博客
自动控制原理学习笔记(三)—— 一阶线性定常离散系统与稳态误差-CSDN博客
自动控制原理学习笔记(四)—— 一阶系统的实验表征和 MATLAB 仿真-CSDN博客
自动控制原理学习笔记(五)—— 二阶离散系统,比例控制和 PD 控制-CSDN博客
自动控制原理学习笔记(六)—— 使用 MATLAB 求解二阶系统,PID 控制介绍-CSDN博客
自动控制原理学习笔记(八)—— 离散系统的传递函数和极点-CSDN博客
自动控制原理学习笔记(九)—— 从离散系统到连续系统-CSDN博客
一、频率响应简介
迄今为止,我们主要研究系统在阶跃信号下的响应,即阶跃响应。如下图所示:
现在我们令输入信号为正弦信号,通过分析系统的频率响应从而分析系统的特征。该方法也称为频域分析法。
如果一个连续系统的方框图只包括比较点、增益、微分或积分模块,则该系统在正弦输入信号下的响应信号也一定是正弦信号,且该输出信号:
- 频率与输入信号相同;
- 幅值和相位与输入信号不同。
如下图所示:
关于响应信号性质的证明略,具体证明可以通过分析连续系统的特征方程。
二、欧拉公式
著名数学家欧拉在 1748 年提出了数学家最著名、最伟大、最美丽的公式之一 —— 欧拉公式。欧拉公式构建了实域和复域之间的桥梁,具体形式为:
当 时,该公式可化简为欧拉恒等式:
该等式将数学里最重要的几个常数联系到了一起:两个超越数:自然对数的底 ,圆周率
,两个单位:虚数单位
和自然数的单位
,以及数学里常见的
。因此,数学家们评价它是 “上帝创造的公式,我们只能看它而不能理解它” 。
通过欧拉公式,我们又可以多一种方式来求解微分方程,以如下微分方程为例:
令 代入到微分方程中,于是 | 令 代入到微分方程中,于是 |
如果我们令 ,则
且
。若
。则
且
,即:
由于虚数 的算术性质与其他任何实数一样,欧拉公式也遵循指数函数的麦克劳林展开:
以自然对数的底 为底的指数函数为例,对其进行麦克劳林展开:
于是:
这也是欧拉公式的其中一种推导方法。
在 1799 年,卡斯帕尔·韦塞尔首次将复数用复平面上的点来表示,而复数的发现则是在 1500 年前后。假设某复数为 ,则它在复平面上如下图所示:
复数是 “二维” 的。与实数不同,复数在复轴方向(即 方向)上仍有对应的分量。这也为我们认识复数提供了新的角度。
于是,欧拉公式可以看作是某复数分别在极坐标和直角坐标系下的表示,如下图所示:
我们还可以由上图得出以下结论:复数加法可以类比的向量加法,复数乘法可以类比向量旋转。
令 和
分别表示两个复数:
于是,
将一个数乘以一个复数可以看作将该数在复平面内旋转。例如某数乘以 后,
- 由
变成
;
- 由
变成
;
- 由
变成
;
- 由
变成
;
即逆时针旋转 ,如下图所示:
例 1 :令
表示一个复数,在复平面下用一个点来表示,如下图所示,其中单位圆的半径为
。
(1)下列图像中,哪个表示
?
(2)下列图像中,哪个表示
(即
的虚部)?
(3)下列图像中,哪个表示
?
答案:(1)G (2)F (3)A
三、频率响应
回到开头对频率响应的介绍。我们用两张图来刻画频率响应:一张以 为横坐标(
为频率,单位赫兹),幅值
为纵坐标;另一张以
为横坐标,相角
为纵坐标。
举个例子,若系统由如下微分方程表示:
该系统的频率响应图像如下图所示:
由此可见,频域分析法是分析系统的其中一个重要方法。
我们再以质量-弹簧系统为例,如下图所示:
当输入频率很小时,输出信号几乎与输入信号相同;
当输入频率接近某个中间值时,输出信号会变得非常大,该现象也称为共振;
当输入频率很大时,输出信号幅值反而小。
四、使用传递函数计算频率响应
虽然我们可以将输入信号 代入到微分方程中来计算系统的频率响应
,但我们可以使用更简单的方法来计算,例如前几章讲过的传递函数。
我们以 为输入信号,由传递函数的定义得:
我们将 代入,于是:
同理, 我们将 代入:
运用欧拉公式将上面两式合并,得到余弦信号对应的频率响应:
如果某系统只包含比较点、增益或微分(或积分)等环节,则该系统的传递函数一定可以用一个有理函数来表示(详见上一章笔记):
(即共轭复数)
由于复数与其共轭复数的和为实数,故我们将余弦信号对应的频率响应进行化简:
其中, ,
。
五、运用向量分析传递函数
传递函数 在点
处的值可以采用向量进行分析。
我们将传递函数的分子和分母进行因式分解,使其化简到能够求解出零点和极点为止:
传递函数分子 / 分母中的每一项都表示在复平面内从零点 / 极点(图中为零点 )到
的一个向量。
传递函数的模可以用这些向量的模来表示。
传递函数在复平面上的角度可以用这些向量的角度来表示。
当 时,系统的频率响应等于
,于是:
令某系统的传递函数为 ,该系统幅值与相角随
的变化如下图所示:
再令某系统的传递函数为 ,该系统幅值与相角随
的变化如下图所示:
再令某系统的传递函数为 ,该系统幅值与相角随
的变化如下图所示:
我们想分析质量-弹簧系统频率响应的幅值和相角,先写出该系统的传递函数:
令弹簧的劲度系数 ,我们绘制图像如下:
例 2 :假设某离散系统和连续系统都有相同的极点
和
,它们的传递函数分别为
和
。
则下列说法中正确的为:
A. 两系统的单位脉冲响应均振荡
B. 两系统均稳定
C. 两系统的稳态解均收敛到零
D. 上面三个选项都不对
答案:A
例题 2 也正好揭示了拉普拉斯变换和 Z 变换的异同(虽然我们并未提过,但前几章我们在系统传递函数的分析中却无时无刻使用到它们,可以参考奥本海姆《信号与系统》P417 ~ P522)。下一讲是第七至第九章笔记内容的整合,我们会对离散系统和连续系统进行整体梳理,具体内容详见下回分解。