这里建议把cuda、pytorch安装在虚拟环境中,这样你需要不同版本的cuda时,可以直接在创个环境安装即可!
一、安装cuda,查看可以安装的版本,打开终端输入nvidia-smi,查看cuda version版本,这里12.2建议安装≤12.2版本,这里安装12.1
二、激活到自己的虚拟环境中,使用conda搜索cudatoolkit包,看看能安装什么版本
发现最高只能安装到11.8,但是我需要安装12.1,因此可以通过cuda toolkit
输入指令执行
conda install nvidia/label/cuda-12.1.0::cuda-toolkit
安装好后,执行指令,查看是否安装成功
nvcc -V
二、安装cudnn
执行指令,查看可以安装的版本
conda search cudnn
有你需要的版本可以直接进行安装,没有的话下载安装包安装,9.1.17可以满足12.x的版本
conda install cudnn==9.1.1.17
三、安装pytorch
官网地址: PyTorch(同样在自己的虚拟环境中执行指令)用pip的指令
这里没有我们要的版本,可以点下面的previous versions of pytorch
选择v2.5.1这种版本比较高的指令安装
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia
如果你发现有报错,大概率是因为网络问题,可以先执行下列指令,切换到国内的镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
在执行
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia
检查是否安装成功
输入pip list或者conda list
,看有没有pytorch或者torch,有表示成功。
安装完成后,可以通过以下命令验证安装的 PyTorch 是否正确并与 CUDA 兼容:
python -c "import torch; print(torch.cuda.is_available())"
返回ture,代表成功
四、提醒
在安装的时候可以回遇到各种各样的问题,可以把问题发给AI,询问AI解决办法,祝大家都能成功安装!