ubuntu安装cuda、cudnn、pytorch

这里建议把cuda、pytorch安装在虚拟环境中,这样你需要不同版本的cuda时,可以直接在创个环境安装即可!

一、安装cuda,查看可以安装的版本,打开终端输入nvidia-smi,查看cuda version版本,这里12.2建议安装≤12.2版本,这里安装12.1

二、激活到自己的虚拟环境中,使用conda搜索cudatoolkit包,看看能安装什么版本

发现最高只能安装到11.8,但是我需要安装12.1,因此可以通过cuda toolkit

输入指令执行

conda install nvidia/label/cuda-12.1.0::cuda-toolkit

安装好后,执行指令,查看是否安装成功

nvcc -V 

二、安装cudnn

执行指令,查看可以安装的版本

conda search cudnn

有你需要的版本可以直接进行安装,没有的话下载安装包安装,9.1.17可以满足12.x的版本

conda install cudnn==9.1.1.17

三、安装pytorch

官网地址: PyTorch(同样在自己的虚拟环境中执行指令)用pip的指令

这里没有我们要的版本,可以点下面的previous versions of pytorch

选择v2.5.1这种版本比较高的指令安装

conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia 

如果你发现有报错,大概率是因为网络问题,可以先执行下列指令,切换到国内的镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

在执行

conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia 

检查是否安装成功

输入pip list或者conda list,看有没有pytorch或者torch,有表示成功。

安装完成后,可以通过以下命令验证安装的 PyTorch 是否正确并与 CUDA 兼容:

python -c "import torch; print(torch.cuda.is_available())" 

返回ture,代表成功

四、提醒

在安装的时候可以回遇到各种各样的问题,可以把问题发给AI,询问AI解决办法,祝大家都能成功安装!

### 如何在 Ubuntu安装和配置 CUDACuDNNPyTorch #### 安装 CUDA 对于 CUDA安装,可以从 NVIDIA 开发者网站获取特定版本的安装包并执行相应的脚本文件。例如,要安装 CUDA 10.0 版本,在终端输入命令来下载对应的运行文件,并通过 `sh` 命令启动安装过程[^1]。 ```bash wget https://developer.download.nvidia.com/compute/cuda/10.0.130/local_installers/cuda_10.0.130_410.48_linux.run sudo sh cuda_10.0.130_410.48_linux.run ``` 完成上述操作之后,还需要设置环境变量以便于后续能够正常使用 CUDA 工具链。这通常涉及到编辑用户的 `.bashrc` 文件以添加路径到 `$PATH` 变量中: ```bash echo 'export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}' >> ~/.bashrc source ~/.bashrc ``` #### 配置 CuDNN 接着是 CuDNN 库的配置工作。一般情况下,可以直接从官方资源页面下载适用于所选 CUDA 版本的 CuDNN tarball 文件。解压该压缩包并将其中的内容复制至已有的 CUDA 目录下即可实现集成[^2]。 假设已经获得了 cuDNN v7.6.5 for CUDA 10.0,则可以按照如下方式处理: ```bash tar -xzvf cudnn-10.0-linux-x64-v7.6.5.32.tgz sudo cp cuda/include/* /usr/local/cuda-10.0/include/ sudo cp cuda/lib64/* /usr/local/cuda-10.0/lib64/ ``` 最后同样需要更新动态链接器缓存: ```bash sudo ldconfig ``` #### 设置 PyTorch 为了使 Python 能够识别新安装好的 GPU 加速库,推荐使用 Conda 来管理依赖关系以及创建独立的工作空间。首先应当依据个人需求选取合适的 Miniconda 或 Anaconda 发行版进行部署[^3]。 这里给出基于 Miniconda 创建名为 pytorch_env 的虚拟环境中加入 PyTorch 组件的方法: ```bash # 下载 Miniconda 并安装 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh # 初始化 conda 环境 conda init bash source ~/.bashrc # 创建新的 conda 环境并激活它 conda create --name pytorch_env python=3.9 conda activate pytorch_env # 添加 pytorch 渠道并安装对应版本 conda install pytorch torchvision torchaudio cudatoolkit=10.0 -c pytorch ``` 至此便完成了整个流程中的所有步骤,现在可以在支持 CUDA 的设备上利用 PyTorch 进行高效的数值计算了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值