数字图像处理总结小记

为什么压缩?

图像压缩的主要目的是减少图像数据所占用的存储空间或传输带宽,以提高存储和传输效率。在实际应用中,图像数据量通常很大,如果不进行压缩处理,将会占用大量的存储空间或传输带宽,导致存储和传输成本增加。

另外,图像压缩也能够提高图像传输的速度和响应速度,因为图像数据量较小时,传输时间会更短,用户能够更快地获取到图像信息。此外,在一些需要实时传输图像的应用场景中,例如远程监控、视频会议等,压缩后的图像数据能够更快地传输,保证实时性和稳定性。

冗余分类

  1. 编码冗余:如果一个图像的灰度级编码使用了多于实际需要的编码符号,就称编码冗余
  2. 像素冗余:由于任何给定的像素值,原理上都可以通过它的邻居预测到,单个像素携带的信息相对是小
  3. 视觉心理冗余:一些信息在一般视觉处理中比其他信息的相对重要程度较小

图像处理

图像->图像预处理->图像分割->特征提取->图像识别->图像理解

有多个物体的数字图像

-(输入图像)->图像分割-(物体图像)->特征抽取-(特征矢量)->分类

图像分割:检测出各种物体,并把他们的图像和其余景物分开

特征抽取:对物体进行度量,即进行定量分析估计

分类:仅仅输出一种决策。确定每个物体的类别。

图像分割概念:

把图像分成各具特性的互不重叠的区域,并提取出感兴趣目标的技术和过程

边缘检测

边缘检测是数字图像处理中的一项重要技术,用于识别图像中灰度变化显著的地方,通常表示物体边界或区域的边缘。边缘检测在计算机视觉、图像分割和目标识别等领域有着广泛的应用。

常见的边缘检测算法包括:

Roberts算子:Roberts算子是一种简单的边缘检测算子,它使用2x2的卷积核对图像进行卷积操作,以检测水平和垂直方向上的边缘。

Sobel算子:Sobel算子是一种常用的边缘检测算子,它利用3x3的卷积核对图像进行卷积操作,分别计算水平和垂直方向上的灰度梯度,然后通过求平方和再开方得到最终的梯度幅值。

Prewitt算子:Prewitt算子也是一种使用3x3卷积核的边缘检测算子,类似于Sobel算子,但采用了不同的卷积核权值。

Laplacian算子:Laplacian算子是一种基于二阶导数的边缘检测算子,可以通过对图像进行拉普拉斯变换来检测出图像中的边缘。

空域增强

空域增强是数字图像处理中常用的一种技术,旨在改善图像的质量、清晰度和对比度。它是指通过直接操作图像像素的数值来进行增强处理,而不是转换到频域进行处理。

空域增强的方法通常涉及以下几种技术:

灰度变换:通过调整图像的灰度级别和对比度来增强图像的视觉效果。例如,直方图均衡化是一种常见的灰度变换技术,可以通过重新分布图像的灰度级别来增强图像的对比度。

滤波:利用各种滤波器(如均值滤波、高斯滤波、中值滤波等)来平滑图像、去除噪声或增强图像的边缘特征。滤波可以帮助去除图像中的高频噪声,同时保留图像中的重要细节。

锐化:应用锐化滤波器(如拉普拉斯滤波器)来增强图像的边缘和细节,从而使图像看起来更加清晰。

边缘增强:通过检测图像中的边缘,并增强这些边缘来突出图像中的重要特征。

噪声抑制:采用各种技术来抑制图像中的噪声,如平滑滤波、小波去噪等。

频率域增强

频率域增强(Frequency domain enhancement)是数字图像处理中常用的一种技术,旨在增强图像的频谱信息,以实现对图像的增强和滤波。频率域增强基于傅里叶变换(Fourier Transform)和相关的频域处理技术,可以有效地增强图像的细节和纹理,同时抑制噪声和模糊。

什么是数字图像

数字图像是由数字化技术将模拟图像转换为数字形式的图像。数字图像由一系列的像素组成,每个像素都有一个特定的位置和颜色值。这些像素按照一定的规律排列在二维平面上,形成了数字图像。

什么是连续图像

连续图像是指在空间上具有连续变化的图像,通常是指模拟图像。这类图像包括了在无限小的空间范围内具有无限数量的不间断亮度级的图像。

量化,采样

采样是指将连续的信号转换为离散的信号的过程,通常在数字信号处理和图像处理中使用。在图像处理中,采样是指将连续的图像数据转换为离散的像素点数据的过程,通常通过在图像上均匀地选取一些点来实现

量化是指将连续的信号或者数字信号转换为离散的信号或者数字信号的过程,通常涉及到将数据进行舍入或截断操作。在图像处理中,量化通常用于将像素的灰度值转换为特定的数字值,以方便存储和处理。

图像存储

图像存储是指将数字图像保存到计算机或其他存储介质中的过程。常见的图像存储格式包括JPEG、PNG、BMP、GIF等。不同的存储格式在存储效率、存储质量、透明度、支持的色彩深度等方面有所差异,因此需要根据实际应用需求选择合适的存储格式。

灰度图

灰度图是指每个像素点的取值范围在0到255之间的图像,其中0表示黑色,255表示白色,其他数字表示不同程度的灰色。灰度图通常用于表示黑白图像或者彩色图像的亮度信息。

二值图

二值图是指每个像素点只能取两个数值中的一个,通常用0和1表示,其中0表示黑色或者背景,1表示白色或者前景。二值图常用于表示图像的形状、轮廓等信息,以及在图像处理中进行形状匹配、边缘检测等操作。

香农定理

量化,采样

采样是指将连续的信号转换为离散的信号的过程,通常在数字信号处理和图像处理中使用。在图像处理中,采样是指将连续的图像数据转换为离散的像素点数据的过程,通常通过在图像上均匀地选取一些点来实现

量化是指将连续的信号或者数字信号转换为离散的信号或者数字信号的过程,通常涉及到将数据进行舍入或截断操作。在图像处理中,量化通常用于将像素的灰度值转换为特定的数字值,以方便存储和处理。

图像存储

图像存储是指将数字图像保存到计算机或其他存储介质中的过程。常见的图像存储格式包括JPEG、PNG、BMP、GIF等。不同的存储格式在存储效率、存储质量、透明度、支持的色彩深度等方面有所差异,因此需要根据实际应用需求选择合适的存储格式。

灰度图

灰度图是指每个像素点的取值范围在0到255之间的图像,其中0表示黑色,255表示白色,其他数字表示不同程度的灰色。灰度图通常用于表示黑白图像或者彩色图像的亮度信息。

二值图

二值图是指每个像素点只能取两个数值中的一个,通常用0和1表示,其中0表示黑色或者背景,1表示白色或者前景。二值图常用于表示图像的形状、轮廓等信息,以及在图像处理中进行形状匹配、边缘检测等操作。

Protobuf是一种高效的序列化协议,可以用于数据交换和数据存储。它的主要优势是大小小,速度快,可扩展性强。下面是使用Protobuf的一些小记: 1. 定义消息格式 首先,需要定义消息格式,以便Protobuf可以将数据序列化和反序列化。消息格式定义在.proto文件中,使用protobuf语言编写。例如,下面是一个简单的消息格式定义: ``` syntax = "proto3"; message Person { string name = 1; int32 age = 2; } ``` 这个消息格式定义了一个名为Person的消息,包含两个字段:name和age。 2. 生成代码 一旦消息格式定义好,就可以使用Protobuf编译器生成代码。编译器将根据消息格式定义生成相应的代码,包括消息类、序列化和反序列化方法等。可以使用以下命令生成代码: ``` protoc --java_out=. message.proto ``` 这将生成一个名为message.pb.java的Java类,该类包含Person消息的定义以及相关方法。 3. 序列化和反序列化 一旦生成了代码,就可以使用Protobuf序列化和反序列化数据。例如,下面是一个示例代码,将一个Person对象序列化为字节数组,并将其反序列化为另一个Person对象: ``` Person person = Person.newBuilder() .setName("Alice") .setAge(25) .build(); byte[] bytes = person.toByteArray(); Person deserializedPerson = Person.parseFrom(bytes); ``` 这个示例代码创建了一个Person对象,将其序列化为字节数组,然后将其反序列化为另一个Person对象。在这个过程中,Protobuf使用生成的代码执行序列化和反序列化操作。 以上是使用Protobuf的一些基本步骤和注意事项,希望对你有所帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值