支持向量机

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、基于最大间隔分隔数据

线性模型

在二维空间中,当存在两类点,并且它们可以被一条直线完全分开时,我们称其为线性可分。如下图所示,在二维坐标系中,我们可以找到一条直线,将不同类别的样本点分开。这条直线可以作为线性模型的一种表示形式。

上述将数据集分隔开来的直线称为分隔超平面,即w^{T}x+b=0。 

超平面

当数据点在二维平面上时,分隔超平面就是一条直线。但是,如果数据集是三维的,那么分隔数据的是一个平面。更高维的情况可以依此类推。例如,如果数据集是1000维的,则需要使用一个999维的对象来对数据进行分隔。当数据集是N维时,需要一个N-1维的对象来对数据进行分隔。N-1维的该对象被称为超平面,也就是分类的决策边界。超平面将数据空间分成两个部分,每个部分都对应于不同的类别。超平面可以用数学表达式表示为:w1x1 + w2x2 + ... + wNxN + b = 0,其中x1, x2, ..., xN是数据点的N个特征,w1, w2, ..., wN是超平面的法向量,b是偏移量。超平面的法向量与数据点之间的距离称为间隔。SVM的目标是找到一个最大间隔的超平面,即使得支持向量到超平面的距离最大化。支持向量是指距离超平面最近的数据点。通过最大化支持向量到超平面的距离,SVM可以得到一个具有较好泛化性能的分类模型。

支持向量

如下图,支持向量(support vector)就是离分隔超平面最近的那些点。

超平面方程:w^{T}x+b=0

 

import numpy as np

# 随机选择alpha
def selectJrand(i, m):
    j = i
    while j == i:
        j = int(np.random.uniform(0, m))
    return j

# 修剪alpha
def clipAlpha(aj, H, L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

# 类
class optStruct:
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = np.shape(dataMatIn)[0]
        self.alphas = np.mat(np.zeros((self.m, 1)))
        self.b = 0
        self.eCache = np.mat(np.zeros((self.m, 2)))
        self.K = np.mat(np.zeros((self.m, self.m)))

        for i in range(self.m):
            self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)

# 通过核函数将数据转换到更高维空间
def kernelTrans(X, A, kTup):
    m, n = np.shape(X)
    K = np.mat(np.zeros((m, 1)))

    if kTup[0] == 'lin':
        K = X * A.T
    elif kTup[0] == 'rbf':
        for j in range(m):
            deltaRow = X[j, :] - A
            K[j] = deltaRow * deltaRow.T
        K = np.exp(K / (-1 * kTup[1] ** 2))
    else:
        raise NameError('无法识别的核函数类型')

    return K

# 计算误差
def calcEk(oS, k):
    fXk = float(np.multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

# 内循环启发方式
def selectJ(i, oS, Ei):
    maxK = -1
    maxDeltaE = 0
    Ej = 0
    oS.eCache[i] = [1, Ei]
    validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0]

    if len(validEcacheList) > 1:
        for k in validEcacheList:
            if k == i:
                continue
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if deltaE > maxDeltaE:
                maxK = k
                maxDeltaE = deltaE
                Ej = Ek
        return maxK, Ej
    else:
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
        return j, Ej

# 计算Ek并更新误差缓存
def updateEk(oS, k):
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1, Ek]

# 优化的SMO算法
def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        j, Ej = selectJ(i, oS, Ei)
        alphaIold = oS.alphas[i].copy()
        alphaJold = oS.alphas[j].copy()

        if oS.labelMat[i] != oS.labelMat[j]:
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])

        if L == H:
            print("L==H")
            return 0

        eta = 2.0 * oS.X[i, :] * oS.X[j, :].T - oS.X[i, :] * oS.X[i, :].T - oS.X[j, :] * oS.X[j, :].T
        if eta >= 0:
            print("eta>=0")
            return 0

        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        updateEk(oS, j)

        if abs(oS.alphas[j] - alphaJold) < 0.00001:
            print("j not moving enough")
            return 0

        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])
        updateEk(oS, i)

        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[i, j]
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (oS.alphas[j] - alphaJold) * oS.K[j, j]

        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0

# 完整的线性SMO算法
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)
    iter = 0
    entireSet = True
    alphaPairsChanged = 0

    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0

        if entireSet:
            for i in range(oS.m):
                alphaPairsChanged += innerL(i, oS)
                print("全样本遍历,第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged))
            iter += 1
        else:
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                print("非边界遍历,第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged))
            iter += 1

        if entireSet:
            entireSet = False
        elif alphaPairsChanged == 0:
            entireSet = True
        print("迭代次数: %d" % iter)
    return oS.b, oS.alphas

# 图像转换为向量
def img2vector(filename):
    returnVect = np.zeros((1, 1024))
    fr = open(filename)

    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32 * i + j] = int(lineStr[j])

    return returnVect

# 加载图像数据
def loadImages(dirName):
    import os
    hwLabels = []
    trainingFileList = os.listdir(dirName)
    m = len(trainingFileList)
    trainingMat = np.zeros((m, 1024))

    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])

        if classNumStr == 9:
            hwLabels.append(-1)
        else:
            hwLabels.append(1)
        trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))

    return trainingMat, hwLabels

# 测试
def testDigits(kTup=('rbf', 10)):
    dataArr, labelArr = loadImages('trainingDigits')
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat = np.mat(dataArr)
    labelMat = np.mat(labelArr).transpose()
    svInd = np.nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]
    labelSV = labelMat[svInd]
    print("支持向量机是 %d " % np.shape(sVs)[0])
    m, n = np.shape(datMat)
    errorCount = 0

    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]):
            errorCount += 1

    print("训练集错误率: %f" % (float(errorCount) / m))
    dataArr, labelArr = loadImages('testDigits')
    errorCount = 0
    datMat = np.mat(dataArr)
    labelMat = np.mat(labelArr).transpose()
    m, n = np.shape(datMat)

    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]):
            errorCount += 1

    print("测试错误率: %f" % (float(errorCount) / m))


总结

SVM的关键思想是最大间隔,即找到将两个类别分开的最优超平面,使得该超平面对于新样本具有很好的泛化性能。为了处理非线性数据,SVM使用核函数将数据映射到高维空间中,从而使数据线性可分。

SVM的训练过程可以通过求解一个二次规划问题实现,但是当数据集非常大时,这种方法会变得非常耗时。为了加快训练速度,SMO算法被提出,并成为SVM的经典算法之一。该算法通过将二次规划问题分解为若干小的子问题,并在每个子问题上进行优化,从而实现了对大规模数据集的高效训练。

总之,SVM是一种强大的分类器,它不仅可以处理线性数据,还可以处理非线性数据,并且具有良好的泛化性能。它的基本思想是基于最大间隔原则,通过将数据映射到高维空间,并在该空间中找到最优超平面实现分类。

  • 8
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值