卡方分布学习笔记

本文介绍了卡方分布的基础知识,包括自由度、概率密度函数和分布函数的定义,以及其在假设检验中的应用。当自由度较大时,卡方分布可近似为正态分布。文章还展示了如何使用Python生成卡方分布的随机变量,并提供了卡方检验的步骤和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卡方分布学习笔记

卡方分布(Chi-Square Distribution)是一种概率分布,常用于假设检验、方差分析等统计推断中。在实际应用中,我们会经常遇到卡方分布,因此有必要对其进行深入了解。

基本定义

  • 自由度(degree of freedom):卡方分布的自由度表示随机变量的个数减1。

  • 概率密度函数: f ( x ) = x m 2 − 1 e − x 2 2 m 2 Γ ( m 2 ) f(x) = \frac{x^{\frac{m}{2}-1}e^{-\frac{x}{2}}}{2^\frac{m}{2}\Gamma(\frac{m}{2})} f(x)=22mΓ(2m)x2m1e2x
    其中, m m m表示自由度, Γ ( m 2 ) \Gamma(\frac{m}{2}) Γ(2m)表示伽玛函数,满足 Γ ( n ) = ( n − 1 ) ! \Gamma(n)=(n-1)! Γ(n)=(n1)!

  • 分布函数: F ( x ) = γ ( m 2 , x 2 ) Γ ( m 2 ) F(x)=\frac{\gamma(\frac{m}{2},\frac{x}{2})}{\Gamma(\frac{m}{2})} F(x)=Γ(2m)γ(2m,2x)
    其中, γ ( s , x ) \gamma(s,x) γ(s,x)表示下不完全伽玛函数,定义为:
    γ ( s , x ) = ∫ 0 x t s − 1 e − t d t \gamma(s,x)=\int_0^xt^{s-1}e^{-t}dt γ(s,x)=0xts1etdt

性质

  1. 当自由度 m m m很大时,卡方分布近似服从正态分布。
  2. 卡方分布是非负的,且右偏。
  3. 卡方分布的期望为 m m m,方差为 2 m 2m 2m

假设检验

卡方分布在假设检验中有着广泛应用。一般地,若要检验一个事件是否遵循某种理论分布,则可以使用卡方检验(Chi-Square Test)。具体步骤如下:

  1. 根据样本数据计算出频数 f i ( i = 1 , 2 , . . . , k ) f_i(i=1,2,...,k) fi(i=1,2,...,k)
  2. 计算出每个类别的期望频数 e i e_i ei(即符合理论分布的样本数量)。
  3. 计算 χ 2 = ∑ i = 1 k ( f i − e i ) 2 e i \chi^2=\sum_{i=1}^k\frac{(f_i-e_i)^2}{e_i} χ2=i=1kei(fiei)2
  4. 对于显著性水平为 α \alpha α的假设检验,如果 χ 2 > χ 1 − α , k − 1 2 \chi^2>\chi_{1-\alpha,k-1}^2 χ2>χ1α,k12,则拒绝原假设;否则接受原假设。

其中, χ 1 − α , k − 1 2 \chi_{1-\alpha,k-1}^2 χ1α,k12表示自由度为 k − 1 k-1 k1、右侧面积为 1 − α 1-\alpha 1α的卡方分位数。

使用示例

下面是使用Python代码生成自由度为 m m m的卡方分布随机变量的示例:

import numpy as np
from scipy.stats import chi2

m = 10
rv = chi2(df=m)
x = np.linspace(0, 20, 1000)
y = rv.pdf(x)

import matplotlib.pyplot as plt
plt.plot(x, y)
plt.title("Chi-Square Distribution (m={})".format(m))
plt.xlabel("X")
plt.ylabel("Probability Density")
plt.show()

总结

本篇博客介绍了卡方分布的基本定义、性质、假设检验以及使用示例。希望可以对读者在统计推断中遇到卡方分布有所帮助。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值