迁移学习(Transfer Learning)的背景、历史

迁移学习旨在解决训练数据有限和数据分布变化的问题,通过将一个领域的知识转移到另一个领域,提高目标领域的学习效果。该概念源于人类的学习能力,自1995年以来不断发展,涉及领域与任务的定义、边缘分布和条件概率等多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迁移学习(Transfer Learning)的背景历史

迁移学习的背景历史及学习

1、迁移学习提出背景

    在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:

    1、带标记的训练样本数量有限。比如,处理A领域(target domain)的分类问题时,缺少足够的训练样本。同时,与A领域相关的B(source domain)领域,拥有大量的训练样本,但B领域与A领域处于不同的特征空间或样本服从不同的分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值