迁移学习的简要介绍

本文介绍了迁移学习的基础概念,包括其起源、定义以及处理领域和任务差异的方法。重点讨论了负迁移现象及解决策略,如传递迁移学习。文章还涵盖了基于样本、特征和模型的迁移学习方法,如实例加权、特征变换和预训练-微调的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迁移学习概述

迁移学习是什么?

来源

迁移学习的概念最初来自教育心理学。根据心理学家C.H.Judd提出的经验泛化理论:学习迁移是经验泛化的结果。只要⼀个⼈概括他的经验,可以实现从⼀种情境到另⼀种情境的转移。根据这⼀理论,迁移的前提是两个学习活动之间需要有联系。
在这里插入图片描述

定义

迁移学习的定义:给定源域 D s D_s Ds和学习任务 T s T_s Ts、目标域 D t D_t Dt和学习任务 T t T_t Tt,迁移学习的目的是获取源域 D s D_s Ds和学习任务 T s T_s Ts中的知识以帮助提升目标域中的预测函数 f t ( . ) f_t(.)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值