关于数学上方程作图的一些见解

对于数学上的某些方程我们可能都十分了解。比如:x^2+y^2=1对应的是x,y平面上的以原点为圆心一个单位圆,x^2+4y^2对应的是一个椭圆。大体都可以表达为f(x,y)=0,也就是平面上满足f(x,y)的点的全体构成的集合。那我们是不是也可以记作f(x)=0呢,x是平面上的一个矢量,这样的话对于后面的叙述可能更加方便。

看到图像,我们是不是会自然的想要去改变他的样子,比如拉伸,平移或者是旋转。可是这样子变化后得到的新的图像上的点就不再满足f(x)=0了,那我们该怎么办呢?对于平移我们知道(x,y)—(x’,y’)对于所有平移前与平移后的点的差一定是个常矢量,也就是x’-x=a,y’-y=b,a,b分别是点延x,y轴正方向平移的量。那么对于图像的平移这个问题我们便可以回答了,只要因为平移后的点是原来的点平移了某个常数得到的,我们不妨设平移前的方程为f(x)=0,平移后的点的集合为x平移矢量为a,如果我们将平移后的点如果减去平移的矢量是不是就变成了平移前的点,而平移前的点就满足,f(x’)=0,那么我们是不是就有f(x-a)=0。这个问题便得到了解决,可是刚刚我们还提到了放缩,旋转࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值