【矩阵理论1.4】

第一章 线性空间

1.4 线性映射

1 定义(线性映射与线性变换)

V 1 V_1 V1 V 2 V_2 V2 F \Bbb F F 上的线性空间。 σ : V 1 → V 2 \sigma:V_1\to V_2 σ:V1V2 是映射。如果
(1)(保加法) σ ( e 1 + e 2 ) = σ ( e 1 ) + σ ( e 2 ) \sigma(e_1+e_2)=\sigma(e_1)+\sigma(e_2) σ(e1+e2)=σ(e1)+σ(e2)
(2)(保数乘法) σ ( e k ) = σ ( e ) k \sigma(ek)=\sigma(e)k σ(ek)=σ(e)k
则称 σ \sigma σ V 1 → V 2 V_1 \to V_2 V1V2 的线性映射。 e 1 e_1 e1 σ ( e 1 ) \sigma(e_1) σ(e1) 的原像, σ ( e 1 ) \sigma(e_1) σ(e1) e 1 e_1 e1的像。
V 1 = V 2 = V V_1=V_2=V V1=V2=V,则称 σ : V → V \sigma:V\to V σ:VV V V V 上的线性变换。
从信号的角度讲,也称作符合“叠加原理”

2 例1(线性与非线性映射的例子)

V 1 ∈ R 2 , V 2 ∈ R 2 V_1\in \Bbb R^2,V_2\in \Bbb R^2 V1R2,V2R2
A : [ x 1 x 2 ] ↦ [ x 1 + x 2 x 1 x 2 ] \mathscr A:\begin{bmatrix} x_1 \\ x_2\\ \end{bmatrix}\mapsto \begin{bmatrix} x_1+ x_2\\ x_1x_2\\ \end{bmatrix} A:[x1x2][x1+x2x1x2] 不是线性映射。
B : R 3 → R 2 \mathscr B: \Bbb R^3\to \Bbb R^2 B:R3R2
[ x 1 x 2 x 3 ] ↦ [ x 1 + x 2 − x 3 1 / 2 x 1 − 3 x 2 ] \begin{bmatrix} x_1 \\ x_2\\ x_3\\ \end{bmatrix}\mapsto \begin{bmatrix} x_1+ x_2-x_3\\ 1/2x_1-3x_2\\ \end{bmatrix} x1x2x3 [x1+x2x31/2x13x2] 是线性映射。
注: 若线性映射 σ : V 1 → V 2 \sigma:V_1\to V_2 σ:V1V2 是可逆映射(一一对应),则称 σ \sigma σ 为线性同构。
回顾:选定一组基,可实现抽象线性空间到标准线性空间的一一对应。(有限维)

3 例2(矩阵与标准线性空间之间的线性映射两事物的等同性)

给定 A ∈ F m × n A\in \Bbb F^{m\times n} AFm×n,可构造线性映射 A A : F n → F m \mathscr A_A: \Bbb F^{n}\to \Bbb F^{m} AA:FnFm,即 x ↦ y = A x x \mapsto y=Ax xy=Ax,( A A ( x ) = A x \mathscr A_A(x)=Ax AA(x)=Ax)。
问题:反之,给定映射 A : F n → F m \mathscr A: \Bbb F^{n}\to \Bbb F^{m} A:FnFm,是否能找到唯一的矩阵 A A A_ \mathscr A AA,使得 A A x = A ( x ) A_ \mathscr Ax=\mathscr A(x) AAx=A(x)

F n \Bbb F^{n} Fn的标准基 E 1 , E 2 , ⋯   , E n \mathcal E_1,\mathcal E_2,\cdots,\mathcal E_n E1,E2,,En(单位矩阵的列向量组),构造 A = [ A ( E 1 ) , A ( E 2 ) , ⋯   , A ( E n ) ] A=[\mathscr A(\mathcal E_1),\mathscr A(\mathcal E_2),\cdots,\mathscr A(\mathcal E_n)] A=[A(E1),A(E2),,A(En)],要验证 A x = A ( x ) Ax=\mathscr A(x) Ax=A(x)
证明:
A A x = [ A ( E 1 ) , A ( E 2 ) , ⋯   , A ( E n ) ] x = [ A ( E 1 ) , A ( E 2 ) , ⋯   , A ( E n ) ] [ x 1 ⋮ x n ] = A ( E 1 ) x 1 + ⋯ + A ( E n ) x n \begin{aligned} A_\mathscr Ax &=[\mathscr A(\mathcal E_1),\mathscr A(\mathcal E_2),\cdots,\mathscr A(\mathcal E_n)]x\\ &=[\mathscr A(\mathcal E_1),\mathscr A(\mathcal E_2),\cdots,\mathscr A(\mathcal E_n)]\begin{bmatrix} x_1 \\ \vdots\\ x_n\\ \end{bmatrix}\\ &=\mathscr A(\mathcal E_1)x_1+\cdots+\mathscr A(\mathcal E_n)x_n \end{aligned} AAx=[A(E1),A(E2),,A(En)]x=[A(E1),A(E2),,A(En)] x1xn =A(E1)x1++A(En)xn
由于 A \mathscr A A 是线性映射,故满足数乘运算规则: A ( e ) k = A ( e k ) \mathscr A(e)k=\mathscr A(ek) A(e)k=A(ek)
A A x = A ( E 1 x 1 ) + A ( E 2 x 2 ) + ⋯ + A ( E n x n ) A_\mathscr Ax=\mathscr A(\mathcal E_1x_1)+\mathscr A(\mathcal E_2x_2)+\cdots+\mathscr A(\mathcal E_nx_n) AAx=A(E1x1)+A(E2x2)++A(Enxn)
A \mathscr A A 满足加法运算规则: A ( e 1 ) + A ( e 2 ) = A ( e 1 + e 2 ) \mathscr A(e_1)+\mathscr A(e_2)=\mathscr A(e_1+e_2) A(e1)+A(e2)=A(e1+e2)
因此 A A x = A [ E 1 x 1 + E 2 x 2 + ⋯ + E n x n ] = A ( [ E 1 , ⋯   , E n ] ) [ x 1 ⋮ x n ] = A ( x ) \begin{aligned} A_\mathscr Ax&=\mathscr A[\mathcal E_1x_1+\mathcal E_2x_2+\cdots+\mathcal E_nx_n]\\ &=\mathscr A([\mathcal E_1,\cdots,\mathcal E_n])\begin{bmatrix} x_1 \\ \vdots\\ x_n\\ \end{bmatrix}\\ &=\mathscr A(x) \end{aligned} AAx=A[E1x1+E2x2++Enxn]=A([E1,,En]) x1xn =A(x)
得证。
总结:
给定 A ∈ F m × n A\in \Bbb F^{m\times n} AFm×n,可构造线性映射 A A ( x ) = A x \mathscr A_A(x)=Ax AA(x)=Ax
给定 A : F n → F m \mathscr A: \Bbb F^{n}\to \Bbb F^{m} A:FnFm,可构造矩阵 A = [ A ( E 1 ) , A ( E 2 ) , ⋯   , A ( E n ) ] ∈ F m × n A=[\mathscr A(\mathcal E_1),\mathscr A(\mathcal E_2),\cdots,\mathscr A(\mathcal E_n)]\in \Bbb F^{m\times n} A=[A(E1),A(E2),,A(En)]Fm×n
标准线性空间而言,任何一个抽象的线性映射 A \mathscr A A都可以用一个具体的矩阵去实现
问题:对任意一个线性空间是否都能用矩阵取实现呢?

4 定义(线性映射的矩阵表示)

给定线性映射 A : V → W \mathscr A:V\to W A:VW d i m ( V ) = n dim(V)=n dim(V)=n d i m ( W ) = m dim(W)=m dim(W)=m
选取 V V V 的基 E 1 , ⋯   , E n \mathcal E_1,\cdots,\mathcal E_n E1,,En (入口基), W W W 的基 η 1 , ⋯   , η n \eta _1,\cdots,\eta_n η1,,ηn (出口基)
记第j个入口基向量 E j \mathcal E_j Ej 的像 A ( E j ) \mathscr A(\mathcal E_j) A(Ej) 在出口基下的坐标为 [ a 1 j ⋮ a m j ] \begin{bmatrix} a_1 j\\ \vdots\\ a_mj\\ \end{bmatrix} a1jamj 。即 A ( E j ) = [ η 1 , ⋯   , η n ] [ a 1 j ⋮ a m j ] \mathscr A(\mathcal E_j)=[\eta _1,\cdots,\eta_n]\begin{bmatrix} a_1 j\\ \vdots\\ a_mj\\ \end{bmatrix} A(Ej)=[η1,,ηn] a1jamj
将它们拼成矩阵 A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] m × n A=\begin{bmatrix} a_{11} & a_{12}& \cdots &a_{1n} \\ a_{21} & a_{22}& \cdots &a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2}& \cdots &a_{mn} \\ \end{bmatrix}_{m\times n} A= a11a21am1a12a22am2a1na2namn m×n
则称 A A A A \mathscr A A 在入口基 { E j } \{\mathcal E_j\} {Ej} 和出口基 { η i } \{\eta_i\} {ηi} 下的矩阵表示。
总结:
A [ E 1 , ⋯   , E n ] = [ η 1 , ⋯   , η m ] A \mathscr A[\mathcal E_1,\cdots,\mathcal E_n]=[\eta _1,\cdots,\eta_m]A A[E1,,En]=[η1,,ηm]A
[ 线性映射 ] [ 入口基矩阵 ] = [ 出口基矩阵 ] [ 矩阵表示 ] {[线性映射][入口基矩阵]=[出口基矩阵][矩阵表示]} [线性映射][入口基矩阵]=[出口基矩阵][矩阵表示]

5 定理(用坐标计算线性映射)

已知 A [ E 1 , ⋯   , E n ] = [ η 1 , ⋯   , η m ] A \mathscr A[\mathcal E_1,\cdots,\mathcal E_n]=[\eta _1,\cdots,\eta_m]A A[E1,,En]=[η1,,ηm]A
A : V → W \mathscr A:V\to W A:VW
给定 v ∈ V v\in V vV v v v { E j } \{\mathcal E_j\} {Ej} 下的坐标为 x x x,则 A ( v ) \mathscr A(v) A(v) { η i } \{\eta_i\} {ηi} 下的坐标为 A x Ax Ax
证明: v = [ E 1 , ⋯   , E n ] x v=[\mathcal E_1,\cdots,\mathcal E_n]x v=[E1,,En]x
A ( v ) = A ( E 1 x 1 + ⋯ + E n x n ) = A ( E 1 ) x 1 + ⋯ + A ( E n ) x n = [ A ( E 1 ) , ⋯   , A ( E n ) ] x = [ η 1 , ⋯   , η m ] A x = [ η 1 , ⋯   , η m ] ( A x ) \begin{aligned} \mathscr A(v)&=\mathscr A(\mathcal E_1x_1+\cdots+\mathcal E_nx_n)\\ &=\mathscr A(\mathcal E_1)x_1+\cdots+\mathscr A(\mathcal E_n)x_n\\ &=[\mathscr A(\mathcal E_1),\cdots,\mathscr A(\mathcal E_n)]x\\ &=[\eta_1,\cdots,\eta_m]Ax\\ &=[\eta_1,\cdots,\eta_m](Ax) \end{aligned} A(v)=A(E1x1++Enxn)=A(E1)x1++A(En)xn=[A(E1),,A(En)]x=[η1,,ηm]Ax=[η1,,ηm](Ax)

6 三个举例

6.1 微分算子的矩阵表示

D : R 4 [ x ] → R 3 [ x ] \mathscr D:\Bbb R_4[x]\to R_3[x] D:R4[x]R3[x]
入口基: 1 , x , x 2 , x 3 1,x,x^2,x^3 1,x,x2,x3
出口基: 1 , x , x 2 1,x,x^2 1,x,x2
D [ 1 , x , x 2 , x 3 ] = [ 1 , x , x 2 ] [ 0 1 0 0 0 0 2 0 0 0 0 3 ] 3 × 4 \mathscr D[1,x,x^2,x^3]=[1,x,x^2]\begin{bmatrix} 0&1& 0 &0 \\ 0 & 0& 2 &0 \\ 0 & 0 & 0& 3 \\ \end{bmatrix}_{3\times4} D[1,x,x2,x3]=[1,x,x2] 000100020003 3×4
例如: D ( 1 2 x 3 + 5 x ) \mathscr D(\frac{1}{2}x^3+5x) D(21x3+5x)
(1) 原像在 ( 1 , x , x 2 , x 3 ) (1,x,x^2,x^3) (1,x,x2,x3)下的坐标为 [ 0 5 0 1 2 ] \begin{bmatrix} 0\\ 5\\ 0 \\ \frac{1}{2}\\ \end{bmatrix} 05021
(2) 矩阵乘法 A x = [ 0 1 0 0 0 0 2 0 0 0 0 3 ] [ 0 5 0 1 2 ] = [ 5 0 3 2 ] Ax=\begin{bmatrix} 0&1& 0 &0 \\ 0 & 0& 2 &0 \\ 0 & 0 & 0& 3 \\ \end{bmatrix}\begin{bmatrix} 0\\ 5\\ 0 \\ \frac{1}{2}\\ \end{bmatrix}=\begin{bmatrix} 5\\ 0\\ \frac{3}{2} \\ \end{bmatrix} Ax= 000100020003 05021 = 5023
(3) 求像 [ 1 , x , x 2 ] [ 5 0 3 2 ] = 5 + 3 2 x 2 [1,x,x^2]\begin{bmatrix} 5\\ 0\\ \frac{3}{2} \\ \end{bmatrix}=5+\frac{3}{2}x^2 [1,x,x2] 5023 =5+23x2

6.2 旋转变换的矩阵表示

几何空间绕固定轴旋转角度 θ \theta θ,求旋转运动的矩阵表示。入口和出口都是三维几何空间。

6.3 镜面反射的矩阵表示

选基 [ E 1 , E 2 , E 3 ] [\mathcal E_1,\mathcal E_2,\mathcal E_3] [E1,E2,E3],其中 E 3 \mathcal E_3 E3 是镜面反射的正方向。
A [ E 1 , E 2 , E 3 ] = [ E 1 , E 2 , E 3 ] [ 1 0 0 0 1 0 0 0 − 1 ] 3 × 3 \mathscr A[\mathcal E_1,\mathcal E_2,\mathcal E_3]=[\mathcal E_1,\mathcal E_2,\mathcal E_3]\begin{bmatrix} 1& 0 &0 \\ 0& 1&0 \\ 0 & 0 & -1 \\ \end{bmatrix}_{3\times 3} A[E1,E2,E3]=[E1,E2,E3] 100010001 3×3

7 小节

(1)基实现了抽象线性空间到标准线性空间的一一对应
抽象向量 → 选基 坐标向量 \begin{CD} 抽象向量 @>{\text{选基}}>> 坐标向量 \end{CD} 抽象向量选基 坐标向量
V → { E j } F n \begin{CD} V @>{\text{$\{\mathcal E_j\}$}}>>\Bbb F^n \end{CD} V{Ej} Fn
W → { η i } F m \begin{CD} W @>{\text{$\{\eta_i\}$}}>>\Bbb F^m \end{CD} W{ηi} Fm
(2)矩阵与标准线性空间之间的线性映射的等同性
F n → A F m \begin{CD} \Bbb F^n @>{\text{$A$}}>>\Bbb F^m \end{CD} FnA Fm
(3)线性映射的矩阵表示
A [ E 1 , ⋯   , E n ] = [ η 1 , ⋯   , η m ] A \mathscr A[\mathcal E_1,\cdots,\mathcal E_n]=[\eta _1,\cdots,\eta_m]A A[E1,,En]=[η1,,ηm]A
(4)用坐标计算线性映射
v → A A ( v ) 在入口基下的坐标 ↓ x → y = A x \begin{CD} v @>\mathscr A>> \mathscr A(v)\\ @V在入口基下的坐标V V @.\\ x @>>>y=Ax \end{CD} v在入口基下的坐标 xA A(v) y=Ax实现了用 y = A x y=Ax y=Ax 表示抽象线性空间中的线性映射 A \mathscr A A

(5) 线性映射交换图
V → A W ∥ 一一对应 ∥ F n → A F n V 同构于 F n \begin{CD} V@>{\mathscr A}>> W \\ @|{一一对应}@| \\ \Bbb F^n @>A>> \Bbb F^n \\ @. @. V同构于F^n @. W同构于F^m \end{CD} V Fn A 一一对应A W Fn V同构于Fn

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值