【矩阵理论1.1-1.3】

第一章 线性空间

1.1 线性空间

1 定义(线性空间)

给定非空集合 V V V和域 F \Bbb F F
若存在映射 σ \sigma σ V × V → V V \times V \to V V×VV,则称 σ \sigma σ V V V上 的加法,并记 σ ( v 1 , v 2 ) = v 1 + v 2 \sigma ({v_1},{v_2}) = {v_1} + {v_2} σ(v1,v2)=v1+v2
若存在映射 τ \tau τ V × F → V V \times \Bbb F \to V V×FV,则称 τ \tau τ V V V F \Bbb F F之间的数乘法,并记为 τ ( v , k ) = v ⋅ k \tau (v,k) = v \cdot k τ(v,k)=vk
若这两种运算满足“通常的运算规则”,则称集合 V V V关于此加法和数乘法是域 F \Bbb F F上的线性空间。
“通常的运算规则”:(共8条)

加法运算规则
交换律 v 1 + v 2 = v 2 + v 1 {v_1} + {v_2}= {v_2} + {v_1} v1+v2=v2+v1
结合律 ( v 1 + v 2 ) + v 3 = v 1 + ( v 2 + v 3 ) ({v_1} + {v_2}) + {v_3}={v_1}+({v_2} + {v_3}) (v1+v2)+v3=v1+(v2+v3)
有零元 ∃ e ∈ V \exists e\in V eV, 满足 e + v = v e+v=v e+v=v
有负元 ∀ v ∈ V , ∃ a ∈ V \forall v \in V, \exists a \in V vV,aV,使 v + a = e v+a=e v+a=e. 记 a = − v a=-v a=v.
数乘法运算规则
分配律1 ( v 1 + v 2 ) ⋅ k = v 1 ⋅ k + v 2 ⋅ k ({v_1} + {v_2})\cdot k={v_1} \cdot k+ {v_2}\cdot k (v1+v2)k=v1k+v2k
分配律2 v ⋅ ( k 1 + k 2 ) = v ⋅ k 1 + v ⋅ k 2 v\cdot ({k_1}+{k_2})=v\cdot {k_1}+ v\cdot {k_2} v(k1+k2)=vk1+vk2
F F F中乘法的关系 v ⋅ ( k ⋅ l ) = ( v ⋅ k ) ⋅ l v\cdot (k\cdot l)=(v\cdot k)\cdot l v(kl)=(vk)l
F F F中1的关系 v ⋅ 1 = v v\cdot 1=v v1=v

注1:判断 V V V是否为 F \Bbb F F上的线性空间分为4个步骤:
1) V V V是什么;
2)加法如何定义;
3)数乘法如何定义;
4)这两种运算是否经得起8条检验。
注2:分配律2中等号两边“+”的含义不同。
注3:与 F F F中乘法的关系,等号两边括号中的乘法含义不同。
注4:引入“线性空间”的动机及用途——为了把经典数学笛卡尔解析几何中用代数的方法研究欧几里德几何空间 的数学思想尽可能经过抽象提炼开拓到应用范围更广的领域中去。

2 线性空间举例

例1: F \Bbb F F上的标准线性空间 F n \Bbb F^n Fn

V : = F n = F × F × ⋯ × F V: = {\Bbb F^n} = \Bbb F \times \Bbb F \times \cdots \times \Bbb F V:=Fn=F×F××F
加法: [ v 1 v 2 ⋮ v n ] + [ w 1 w 2 ⋮ w n ] = [ v 1 + w 1 v 2 + w 2 ⋮ v n + w n ] \begin{bmatrix} {v_{1}} \\ {v_{2}}\\ \vdots \\ {v_{n}} \\ \end{bmatrix}+ \begin{bmatrix} {w_{1}} \\ {w_{2}}\\ \vdots \\ {w_{n}} \\ \end{bmatrix}= \begin{bmatrix} {v_{1}}+{w_{1}} \\ {v_{2}}+{w_{2}}\\ \vdots \\ {v_{n}} +{w_{n}} \\ \end{bmatrix} v1v2vn + w1w2wn = v1+w1v2+w2vn+wn
数乘法: [ v 1 v 2 ⋮ v n ] ⋅ k = [ v 1 k v 2 k ⋮ v n k ] \begin{bmatrix} {v_{1}} \\ {v_{2}}\\ \vdots \\ {v_{n}} \\ \end{bmatrix} \cdot k = \begin{bmatrix} {v_{1}} k \\ {v_{2}} k\\ \vdots \\ {v_{n}} k \\ \end{bmatrix} v1v2vn k= v1kv2kvnk

例2:几何空间作为线性空间

——(研究线性空间的全部动机

V = { 空间有向线段的全体 } V = \left\{ {空间有向线段的全体} \right\} V={空间有向线段的全体}
F = 实数域 R \Bbb F=实数域 \Bbb R F=实数域R
加法:平行四边形法则
数乘法:同向或反向伸缩
注:当两条有向线段经过平移能够重叠,则把这两条线段看成一条线段。

例3:函数空间

:控制领域,信号的全体构成函数空间
在这里插入图片描述

笛卡尔利用坐标系将几何学转化为代数学,抽象到一般的线性空间中,什么样的向量组可以类比坐标系?——线性相关性理论

3 向量组的线性相关性及其矩阵描述

(1)向量组及向量组拼成的抽象矩阵

V V V F \Bbb F F上的线性空间
向量组: α 1 , α 2 , ⋯   , α p {\alpha _1},{\alpha _2}, \cdots ,{\alpha _p} α1,α2,,αp { α i } \left\{ {{\alpha _i}} \right\} {αi} V V V 中的元素)
抽象矩阵: [ α 1 , α 2 , ⋯   , α p ] \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _p}} \right] [α1,α2,,αp]

(2) 向量描述

线性相关:
∃ k 1 , k 2 , ⋯   , k p ∈ F \exists {k_1},{k_2}, \cdots ,{k_p} \in {\Bbb F} k1,k2,,kpF 不全为0,使得 α 1 k 1 + α 2 k 2 + ⋯ α p k p = 0 {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots {\alpha _p}{k_p}=0 α1k1+α2k2+αpkp=0 成立。

线性无关:
∀ k 1 , k 2 , ⋯   , k p ∈ F ≠ 0 \forall{k_1},{k_2}, \cdots ,{k_p} \in {\Bbb F} \ne 0 k1,k2,,kpF=0,都有 α 1 k 1 + α 2 k 2 + ⋯ α p k p ≠ 0 {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots {\alpha _p}{k_p}\ne0 α1k1+α2k2+αpkp=0

逆否命题:若 α 1 k 1 + α 2 k 2 + ⋯ α p k p = 0 {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots {\alpha _p}{k_p}=0 α1k1+α2k2+αpkp=0 成立,则有 k 1 = k 2 = ⋯ = k p = 0 {k_1}={k_2}=\cdots={k_p} = 0 k1=k2==kp=0

(3) 矩阵描述

齐次线性方程组 [ α 1 , α 2 , ⋯   , α p ] [ x 1 x 2 ⋮ x p ] = 0 \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _p}} \right]\begin{bmatrix} {x_{1}} \\ {x_{2}} \\ \vdots \\ {x_{p}} \\ \end{bmatrix}= 0 [α1,α2,,αp] x1x2xp =0,即 A x = 0 A{\bf{x}} = 0 Ax=0

线性相关: 齐次线性方程组 A x = 0 A{\bf{x}} = 0 Ax=0 有非零解;
线性无关: 齐次线性方程组 A x = 0 A{\bf{x}} = 0 Ax=0 只有零解。

将是否线性相关的抽象问题转化为求解方程是否有非零解的代数问题

4 两个向量组之间的线性表示及其数学描述

(1)向量描述

给定 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p, { β j } s \left\{ {{\beta _j}} \right\}_s {βj}s, β \beta β

  1. β \beta β 可由 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 线性表示 ⇔ \Leftrightarrow ∃ k 1 , k 2 , ⋯   , k p ∈ F \exists{k_1},{k_2}, \cdots ,{k_p} \in {\Bbb F} k1,k2,,kpF,使 β = α 1 k 1 + α 2 k 2 + ⋯ α p k p \beta = {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots {\alpha _p}{k_p} β=α1k1+α2k2+αpkp
  2. { β j } s \left\{ {{\beta _j}} \right\}_s {βj}s 可由 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 线性表示 ⇔ \Leftrightarrow 每一个 β j {\beta _j} βj 都可以由 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 线性表示。
(2)矩阵描述
  1. 非齐次线性方程组: [ α 1 , α 2 , ⋯   , α p ] [ x 1 x 2 ⋮ x p ] = β \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _p}} \right]\begin{bmatrix} {x_{1}} \\ {x_{2}} \\ \vdots \\ {x_{p}} \\ \end{bmatrix} = \beta [α1,α2,,αp] x1x2xp =β,即 A x = β A{\bf{x}} = \beta Ax=β
    β \beta β 可由 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 线性表示 ⇔ \Leftrightarrow 非齐次线性方程组 A x = β A{\bf{x}} = \beta Ax=β 有解。
  2. 矩阵方程:
    [ α 1 , α 2 , ⋯   , α p ] [ x 11 x 12 ⋯ x 1 q x 21 x 22 ⋯ x 2 q ⋮ ⋮ ⋱ ⋮ x p 1 x p 2 ⋯ x p q ] = [ β 1 , β 2 , ⋯   , β q ] \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _p}} \right]\begin{bmatrix} {x_{11}} & {x_{12}} & \cdots & {x_{1q}} \\ {x_{21}} & {x_{22}} & \cdots & {x_{2q}}\\ \vdots & \vdots & \ddots & \vdots \\ {x_{p1}} & {x_{p2}} & \cdots & {x_{pq}} \\ \end{bmatrix}= \left[ {{\beta _1},{\beta _2}, \cdots, {\beta _q}} \right] [α1,α2,,αp] x11x21xp1x12x22xp2x1qx2qxpq =[β1,β2,,βq],即 A X = B A{\bf{X}} = B AX=B
    { β j } s \left\{ {{\beta _j}} \right\}_s {βj}s 可由 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 线性表示 ⇔ \Leftrightarrow 矩阵方程 A X = B A{\bf{X}} = B AX=B 有解。

5 向量组的极大线性无关子组

(1)定义
  1. 子组: β 1 , β 2 , ⋯   , β s {\beta _1},{\beta _2}, \cdots ,{\beta _s} β1,β2,,βs 称为 α 1 , α 2 , ⋯   , α p {\alpha _1},{\alpha _2}, \cdots ,{\alpha _p} α1,α2,,αp 的子组:从母序列中挑出一个子序列构成向量组,这个子序列构成的向量组为原来母序列的子组。
  2. 子组 β 1 , β 2 , ⋯   , β s {\beta _1},{\beta _2}, \cdots ,{\beta _s} β1,β2,,βs 称为 α 1 , α 2 , ⋯   , α p {\alpha _1},{\alpha _2}, \cdots ,{\alpha _p} α1,α2,,αp 的极大线性无关子组: { β j } s \left\{ {{\beta _j}} \right\}_s {βj}s 线性无关;若 { γ k } t \left\{ {{\gamma _k}} \right\}_t {γk}t 也是 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p 的子组, s < t s<t s<t,则 { γ k } t \left\{ {{\gamma _k}} \right\}_t {γk}t 线性相关。

注: 2.等价于如下表述: ∀ α i ∈ { α i } p \forall{\alpha _i}\in\left\{ {{\alpha _i}} \right\}_p αi{αi}p, α i {\alpha _i} αi 都可由 { β j } s \left\{ {{\beta _j}} \right\}_s {βj}s线性表示。

(2)命题

母组可由其极大线性无关子组线性表示。

(3)定理

向量组的极大线性无关子组所含向量的个数是唯一的。

证明:(反证法)
A = [ α 1 , α 2 , ⋯   , α p ] A=\left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _p}} \right] A=[α1,α2,,αp]
B = [ β 1 , β 2 , ⋯   , β s ] B=\left[ {{\beta _1},{\beta _2}, \cdots ,{\beta _s}} \right] B=[β1,β2,,βs]
C = [ γ 1 , γ 2 , ⋯   , γ t ] C=\left[ {{\gamma _1},{\gamma _2}, \cdots ,{\gamma _t}} \right] C=[γ1,γ2,,γt]
{ β j } s \left\{ {{\beta _j}} \right\}_s {βj}s { γ k } t \left\{ {{\gamma _k}} \right\}_t {γk}t都是 { α i } p \left\{ {{\alpha _i}} \right\}_p {αi}p的极大线性无关子组。
s < t s<t s<t
B X = A BX=A BX=A 有解, A Y = C AY=C AY=C 有解,故 B Z = C BZ=C BZ=C 有解,且 Z = X Y ∈ R s × t Z=XY\in \Bbb R^{s \times t} Z=XYRs×t
引理:扁的齐次线性方程组必有非零解(数学归纳法证明)
利用引理可得 Z W = 0 ZW=0 ZW=0 有非零解 W ≠ 0 W\ne0 W=0,则 B ( Z W ) = C W = 0 B(ZW)=CW=0 B(ZW)=CW=0 有非零解 W W W,与向量组 { γ k } t \left\{ {{\gamma _k}} \right\}_t {γk}t线性无关矛盾。
同理可证 s > t s>t s>t 也矛盾
s = t s=t s=t

6 向量组的秩(rank)

向量组的极大线性无关子组所含向量的个数成为向量组的秩。

1.2 基与坐标

1 定义(有限维线性空间、基、坐标)

V V V F F F 上的线性空间,若有正整数 n n n V V V中的向量组 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn 使得:
1) { α i } \left\{ {{\alpha _i}} \right\} {αi} 线性无关
2) (生成性) ∀ α ∈ V \forall \alpha \in V αV,均可由 { α i } \left\{ {{\alpha _i}} \right\} {αi} 线性表示。
α = α 1 k 1 + α 2 k 2 + ⋯ + α n k n = [ α 1 , α 2 , ⋯   , α n ] [ k 1 k 2 ⋮ k n ] \alpha = {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots + {\alpha _n}{k_n} = \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix} α=α1k1+α2k2++αnkn=[α1,α2,,αn] k1k2kn
则称 V V V n n n 维线性空间。 { α i } \left\{ {{\alpha _i}} \right\} {αi} 称为 V V V 的一个基(坐标系), [ k 1 k 2 ⋮ k n ] ∈ F n \begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix}\in \Bbb F^n k1k2kn Fn 称为 { α i } ∈ V \left\{ {{\alpha _i}} \right\}\in V {αi}V 沿着该基的坐标向量。
[ 抽 象 向 量 ] = [ 基矩阵 ] [ 坐 标 向 量 ] \begin{bmatrix} 抽 \\ 象\\ 向\\ 量 \\ \end{bmatrix}= \left[基矩阵 \right]\begin{bmatrix} 坐 \\ 标\\ 向\\ 量 \\ \end{bmatrix} =[基矩阵]

2 命题(维数的唯一性)

α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn β 1 , β 2 , ⋯   , β m {\beta _1},{\beta _2}, \cdots ,{\beta _m} β1,β2,,βm 分别是 V V V 的两个基,则 m = n m=n m=n
思路:根据向量组的极大线性无关子组所含向量的个数是唯一的,如果可以证明 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn β 1 , β 2 , ⋯   , β m {\beta _1},{\beta _2}, \cdots ,{\beta _m} β1,β2,,βm 都是这个向量组的极大线性无关子组,则 m = n m=n m=n
证明:
因为 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn V V V的一个基,所以 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn 线性无关,且 V V V中的每个元素都可用 { α i } \left\{ {{\alpha _i}} \right\} {αi} 线性表示。
所以 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn β 1 , β 2 , ⋯   , β m {\beta _1},{\beta _2}, \cdots ,{\beta _m} β1,β2,,βm构成的向量组中的每一个元素都可以用 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn 表示。
所以 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn 是极大线性无关组。
同理 β 1 , β 2 , ⋯   , β m {\beta _1},{\beta _2}, \cdots ,{\beta _m} β1,β2,,βm 也是极大线性无关组。
m = n m=n m=n

3 定理(基/坐标系实现了有限维抽象线性空间到标准空间的一一对应) V    ⟺    F n V\iff \Bbb F^n VFn

如果两个集合之间是一一对应的,从抽象的观点讲,这两个集合在数学上是一样的(同构的)
笛卡尔实现了将几何问题翻译成代数问题——建立坐标系
现在要通过建立坐标系,将“用代数的方法研究几何”模拟到抽象的线性空间上。
注1: 映射的定义
f : A → B f: A\to B f:AB
(a) ∀ a ∈ A \forall a \in A aA, 有 b ∈ B b\in B bB a a a 对应。
(b)与 a a a 对应的 b b b 是唯一的。
注2: 一一对应的定义
σ : S 1 → S 2 \sigma:{S_1} \to {S_2} σ:S1S2 是映射,且满足:
(c) ∀ s 2 ∈ S 2 \forall s_2 \in S_2 s2S2,有 ∀ s 1 ∈ S 1 \forall s_1 \in S_1 s1S1 s 2 s_2 s2 对应。
(d)与 s 2 s_2 s2 对应的 s 1 s_1 s1是唯一的。(即 若 s 2 = s 2 , s_2={s_2}^ , s2=s2,,则 s 1 = s 1 , s_1={s_1}^ , s1=s1,

抽象线性空间 V V V α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn V V V 的一个基。求证: σ : V → F n \sigma:V\to \Bbb F^n σ:VFn 是一一对应的。
证明步骤:1)证明 σ : V → F n \sigma:V\to \Bbb F^n σ:VFn 是映射,即满足(a)和(b);2)证明 σ : V → F n \sigma:V\to \Bbb F^n σ:VFn满足(c)和(d)。
证明:
(a)由于 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn V V V 的一个基,
所以, ∀ v ∈ V \forall v\in V vV,有 v = α 1 k 1 + α 2 k 2 + ⋯ + α n k n = [ α 1 , α 2 , ⋯   , α n ] [ k 1 k 2 ⋮ k n ] v= {\alpha _1}{k_1} + {\alpha _2}{k_2} + \cdots + {\alpha _n}{k_n} = \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix} v=α1k1+α2k2++αnkn=[α1,α2,,αn] k1k2kn
∀ v ∈ V \forall v\in V vV,有 [ k 1 k 2 ⋮ k n ] ∈ F n \begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix}\in \Bbb F^n k1k2kn Fn 与之对应。
(b)假设与 v v v 对应的 k k k 不唯一,即 ∃ [ k 1 , k 2 , ⋮ k n , ] \exists \begin{bmatrix} {k_{1}}^, \\ {k_{2}} ^,\\ \vdots \\ {k_{n}}^, \\ \end{bmatrix} k1,k2,kn, v v v 对应,则
v = [ α 1 , α 2 , ⋯   , α n ] [ k 1 k 2 ⋮ k n ] = [ α 1 , α 2 , ⋯   , α n ] [ k 1 , k 2 , ⋮ k n , ] v = \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix}=\left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right] \begin{bmatrix} {k_{1}}^, \\ {k_{2}} ^,\\ \vdots \\ {k_{n}}^, \\ \end{bmatrix} v=[α1,α2,,αn] k1k2kn =[α1,α2,,αn] k1,k2,kn,
从而有 [ α 1 , α 2 , ⋯   , α n ] [ k 1 − k 1 , k 2 − k 2 , ⋮ k n − k n , ] = 0 \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}}-{k_{1}}^, \\ {k_{2}}-{k_{2}} ^, \\ \vdots \\ {k_{n}}-{k_{n}}^, \\ \end{bmatrix}=0 [α1,α2,,αn] k1k1,k2k2,knkn, =0
由于 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn V V V 的一个基,从而 k i − k i , ( i = 1 , ⋯   , n ) {k_{i}}-{k_{i}}^, (i=1,\cdots,n) kiki,(i=1,,n)
(c) ∀ k ∈ [ k 1 k 2 ⋮ k n ] ∈ F n \forall k\in\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix}\in \Bbb F^n k k1k2kn Fn,有 v = [ α 1 , α 2 , ⋯   , α n ] [ k 1 k 2 ⋮ k n ] v = \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix} v=[α1,α2,,αn] k1k2kn 与之对应。
(d)若 k , = k k^, =k k,=k,则 v , = [ α 1 , α 2 , ⋯   , α n ] [ k 1 , k 2 , ⋮ k n , ] = [ α 1 , α 2 , ⋯   , α n ] [ k 1 k 2 ⋮ k n ] = v v^, = \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}}^, \\ {k_{2}}^, \\ \vdots \\ {k_{n}}^, \\ \end{bmatrix}= \left[ {{\alpha _1},{\alpha _2}, \cdots ,{\alpha _n}} \right]\begin{bmatrix} {k_{1}} \\ {k_{2}} \\ \vdots \\ {k_{n}} \\ \end{bmatrix}=v v,=[α1,α2,,αn] k1,k2,kn, =[α1,α2,,αn] k1k2kn =v
得证。

4 F n \Bbb F^n Fn 的标准基(单位矩阵的列向量)和一般基(秩为n)

(1)标准基

e 1 = [ 1 0 ⋮ 0 ] e_1=\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix} e1= 100 e 2 = [ 0 1 ⋮ 0 ] e_2=\begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ \end{bmatrix} e2= 010 ⋯ \cdots e n = [ 0 0 ⋮ 1 ] e_n=\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \end{bmatrix} en= 001 F n \Bbb F^n Fn 的标准基。
1)无关性
e 1 k 1 + e 2 k 2 + ⋯ + e n k n = 0 {e _1}{k_1} + {e _2}{k_2} + \cdots + {e _n}{k_n} = 0 e1k1+e2k2++enkn=0 只有零解 k i = 0 ( i = 1 , ⋯   , n ) k_i=0 (i=1,\cdots,n) ki=0(i=1,,n)
2)可表示性
∀ v = [ c 1 c 2 ⋮ c n ] \forall v=\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ \end{bmatrix} v= c1c2cn ,则 v = [ e 1 , e 2 , ⋯   , e n ] [ c 1 c 2 ⋮ c n ] v= \left[ {{e _1},{e _2}, \cdots ,{e _n}} \right]\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ \end{bmatrix} v=[e1,e2,,en] c1c2cn 有解 x = v x=v x=v
标准基向量拼成的矩阵是单位矩阵,单位矩阵的列向量组是标准基向量组。

(2)一般基

α 1 , α 2 , ⋯   , α n ∈ F n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} \in \Bbb F^n α1,α2,,αnFn 构成基的充要条件是向量组的秩为n,即 α 1 , α 2 , ⋯   , α n {\alpha _1},{\alpha _2}, \cdots ,{\alpha _n} α1,α2,,αn 线性无关。
β ∈ F n \beta \in \Bbb F^n βFn { α i } \left\{ {{\alpha _i}} \right\} {αi} 下的坐标为 A x = β A{\bf{x}} = \beta Ax=β 的解。
将抽象向量 β \beta β 沿着系数矩阵 A A A 的列向量展开求坐标的问题(几何问题)转化为了求解线性方程组 A x = β A{\bf{x}} = \beta Ax=β 的问题(代数问题)。

5 无限维空间举例(多项式函数)

F [ X ] = { f ∣ f ∈ F ( F , F ) , 且 f 可写为多项式 } \Bbb F[X]=\left\{f|f \in \mathscr F(\Bbb F,\Bbb F),且 f 可写为多项式\right\} F[X]={ffF(F,F),f可写为多项式}——无限维
F n [ X ] = { 次数 < n ,以 F 中的数为系数的多项式 } \Bbb F_n[X]=\left\{次数<n,以\Bbb F中的数为系数的多项式\right\} Fn[X]={次数<n,以F中的数为系数的多项式}——有限维
注: F = R \Bbb F=\Bbb R F=R时, R n [ X ] \Bbb R_n[X] Rn[X] 是n维的, R [ X ] \Bbb R[X] R[X]是无限维的。
(1) R n [ X ] \Bbb R_n[X] Rn[X] 。取 1 , x , ⋯   , x n − 1 1,x, \cdots ,x^{n-1} 1,x,,xn1,说明它们是 R n [ X ] \Bbb R_n[X] Rn[X] 的一个基。
思路:1)无关性: [ 1 , x , ⋯   , x n − 1 ] [ a 0 a 1 ⋮ a n − 1 ] = 0 \left[ {1,x, \cdots ,x^{n-1}} \right]\begin{bmatrix} a_0 \\ a_1\\ \vdots \\ a_{n-1}\\ \end{bmatrix}=0 [1,x,,xn1] a0a1an1 =0是否只有零解?2)可表示性
证明:
1)无关性:
x = 1 , 2 , ⋯   , n x=1,2,\cdots,n x=1,2,,n 代入,得:
[ 1 0 1 1 ⋯ 1 n − 1 2 0 2 1 ⋯ 2 n − 1 ⋮ ⋮ ⋱ ⋮ n 0 n 1 ⋯ n n − 1 ] [ a 0 a 1 ⋮ a n − 1 ] = A [ a 0 a 1 ⋮ a n − 1 ] = 0 \begin{bmatrix} {1^0} & {1^1} & \cdots & {1^{n-1}} \\ {2^0} & {2^1} & \cdots & {2^{n-1}}\\ \vdots & \vdots & \ddots & \vdots \\ {n^0} & {n^1} & \cdots & {n^{n-1}}\\ \end{bmatrix}\begin{bmatrix} a_0 \\ a_1\\ \vdots \\ a_{n-1}\\ \end{bmatrix}=A\begin{bmatrix} a_0 \\ a_1\\ \vdots \\ a_{n-1}\\ \end{bmatrix}=0 1020n01121n11n12n1nn1 a0a1an1 =A a0a1an1 =0
由于 ∣ A ∣ ≠ 0 \left| A \right|\ne 0 A=0 (A是范德蒙矩阵),故 a 0 = a 1 = ⋯ = a n − 1 = 0 a_0=a_1=\cdots=a_{n-1}=0 a0=a1==an1=0
2)可表示性
∀ f ∈ R n [ x ] \forall f \in \Bbb R_n[x] fRn[x],则 f = a 0 + a 1 x 1 + ⋯ + a n − 1 x n − 1 = [ 1 , x , ⋯   , x n − 1 ] [ a 0 a 1 ⋮ a n − 1 ] = 0 f=a_0+a_1x^1+\cdots+a_{n-1}x^{n-1}=\left[ {1,x, \cdots ,x^{n-1}} \right]\begin{bmatrix} a_0 \\ a_1\\ \vdots \\ a_{n-1}\\ \end{bmatrix}=0 f=a0+a1x1++an1xn1=[1,x,,xn1] a0a1an1 =0
得证。

(2) R [ X ] \Bbb R[X] R[X] ∀ f 1 , ⋯   , f N ∈ R [ x ] \forall {f_1},\cdots,{f_N} \in \Bbb R[x] f1,,fNR[x]都不是 R [ x ] \Bbb R[x] R[x] 的基
证明:
d i = ∂ ( f i ) = ( f i 的次数 ) , i = 1 , ⋯   , N d_i=\partial ({f_i})=(f_i 的次数),i=1,\cdots,N di=(fi)=(fi的次数)i=1,,N
d = max ⁡ { d 1 , ⋯   , d N } d=\max \left\{d_1, \cdots ,d_N \right\} d=max{d1,,dN},可证 x d + 1 ∈ F [ x ] x^{d+1}\in \Bbb F[x] xd+1F[x] 不能由 f i f_i fi 线性表示。
(反证)若 x d + 1 x^{d+1} xd+1 可由 f i f_i fi 线性表示,则有 x d + 1 = a 1 f 1 + a 2 f 2 + ⋯ + a N f N = b 0 x 0 + b 1 x 1 + ⋯ + b d x d x^{d+1}=a_1f_1+a_2f_2+\cdots+a_{N}f_{N}=b_0x^0+b_1x^1+\cdots+b_{d}x^{d} xd+1=a1f1+a2f2++aNfN=b0x0+b1x1++bdxd
于是 b 0 x 0 + b 1 x 1 + ⋯ + b d x d − x d + 1 = 0 b_0x^0+b_1x^1+\cdots+b_{d}x^{d}-x^{d+1}=0 b0x0+b1x1++bdxdxd+1=0
⇒ \Rightarrow b 0 = b 1 = ⋯ = b d = − 1 = 0 b_0=b_1=\cdots=b_d=-1=0 b0=b1==bd=1=0
− 1 ≠ 0 -1\ne0 1=0矛盾。得证。
注: 多项式的全体不是有限维的

1.3 子空间

1 定义(子空间)

V V V F \Bbb F F 上的线性空间, W ⊆ V W\subseteq V WV 是非空子集。若
1)对加法封闭
α , β ∈ W ⇒ α + β ∈ W \alpha,\beta\in W \Rightarrow \alpha+\beta\in W α,βWα+βW
2)对数乘法封闭
k ∈ F , α ∈ W ⇒ α k ∈ W k\in \Bbb F,\alpha \in W \Rightarrow \alpha k\in W kF,αWαkW
则称 W W W V V V 的一个子空间。
**注:**子空间 W W W V V V 中原有的加法和数乘法也构成线性空间。
加法: V × V → V V\times V \to V V×VV W × W → W W\times W \to W W×WW(子空间)

2 例1:子空间

在这里插入图片描述
W W W V V V 的一个子空间(起点在原点,终点在 W W W上的所有有向线段的集合),但 W , W^, W, 不是 V V V 的子空间。

3 例2:向量组生成的子空间及子空间的生成组

(1)向量组生成的子空间( W W W

α 1 , α 2 , ⋯   , α p {\alpha _1},{\alpha _2}, \cdots ,{\alpha _p} α1,α2,,αp 是向量组(一般向量组)
W = s p a n { α 1 , α 2 , ⋯   , α p } = { α 1 c 1 + α 2 c 2 + ⋯ + α p c p ∣ c i ∈ F , i = 1 , ⋯   , p } = { 向量组 α i 的线性组合 } W=span\{\alpha_1,\alpha_2,\cdots,\alpha_p\}=\{\alpha_1c_1+\alpha_2c_2+\cdots+\alpha_pc_p|c_i\in \Bbb F,i=1,\cdots,p\}=\{向量组\alpha_i的线性组合\} W=span{α1,α2,,αp}={α1c1+α2c2++αpcpciF,i=1,,p}={向量组αi的线性组合}
W = s p a n { α 1 , α 2 , ⋯   , α p } W=span\{\alpha_1,\alpha_2,\cdots,\alpha_p\} W=span{α1,α2,,αp} V V V的一个子空间。称为向量组 α i \alpha_i αi所生成的子空间。

在向量组给定的情况下,让线性组合的系数跑个遍,跑出来的轨迹的全体是子空间
证明:
w 1 = α 1 c 1 + α 2 c 2 + ⋯ + α p c p w_1=\alpha_1c_1+\alpha_2c_2+\cdots+\alpha_pc_p w1=α1c1+α2c2++αpcp ( w 1 ∈ W w_1\in W w1W)
w 2 = α 1 c 1 , + α 2 c 2 , + ⋯ + α p c p , w_2=\alpha_1c_1^,+\alpha_2c_2^,+\cdots+\alpha_pc_p^, w2=α1c1,+α2c2,++αpcp, ( w 2 ∈ W w_2\in W w2W)
w 1 + w 2 = α 1 ( c 1 + c 1 , ) + α 2 ( c 2 + c 2 , ) + ⋯ + α p ( c p + c p , ) w_1+w_2=\alpha_1(c_1+c_1^,)+\alpha_2(c_2+c_2^,)+\cdots+\alpha_p(c_p+c_p^,) w1+w2=α1(c1+c1,)+α2(c2+c2,)++αp(cp+cp,) ( w 1 + w 2 ∈ W w_1+w_2\in W w1+w2W)

(2)子空间的生成组( α i \alpha_i αi

已知 W W W,若有向量组 α 1 , α 2 , ⋯   , α p {\alpha _1},{\alpha _2}, \cdots ,{\alpha _p} α1,α2,,αp 使 W = s p a n { α 1 , α 2 , ⋯   , α p } W=span\{\alpha_1,\alpha_2,\cdots,\alpha_p\} W=span{α1,α2,,αp},则称 α i \alpha_i αi 为子空间的生成组。
生成组的概念提供了子空间的一种表现方式
子空间的所有元素不可能一一表示出来,但生成组是可以写出来的

4 例3: A ∈ F m × n A\in \Bbb F^{m \times n} AFm×n 的核与像

(1) K e r A = { x ∣ x ∈ F n , A x = 0 } KerA=\{x|x\in\Bbb F^n,Ax=0\} KerA={xxFn,Ax=0} F n \Bbb F^n Fn 的子空间。
(2) i m A = { y ∣ y ∈ F m , ∀ x ∈ F n 使 y = A x } = { A x ∣ x ∈ F n } imA=\{y|y\in\Bbb F^m,\forall x\in\Bbb F^n使 y=Ax\}=\{Ax|x\in\Bbb F^n\} imA={yyFm,xFn使y=Ax}={AxxFn} F m \Bbb F^m Fm 的子空间。
证明:
(1) { x ∣ A x = 0 , x ∈ F n } ⊆ F n \{x|Ax=0,x\in\Bbb F^n\}\subseteq \Bbb F^n {xAx=0,xFn}Fn
A x 1 = 0 , A x 2 = 0. Ax_1=0,Ax_2=0. Ax1=0,Ax2=0. ⇒ \Rightarrow A ( x 1 + x 2 ) = 0 A(x_1+x_2)=0 A(x1+x2)=0
A x = 0 , k ∈ F . Ax=0,k\in \Bbb F. Ax=0,kF. ⇒ \Rightarrow A ( x k ) = ( A x ) k = 0 A(xk)=(Ax)k=0 A(xk)=(Ax)k=0(矩阵乘法的结合律)
(2) { A x ∣ x ∈ F n } ⊆ F m \{Ax|x\in\Bbb F^n\}\subseteq \Bbb F^m {AxxFn}Fm
y 1 = A x 1 , y 2 = A x 2 . y_1=Ax_1,y_2=Ax_2. y1=Ax1,y2=Ax2. ⇒ \Rightarrow y 1 + y 2 = A ( x 1 + x 2 ) y_1+y_2=A(x_1+x_2) y1+y2=A(x1+x2)
y = A x , k ∈ F . y=Ax,k\in \Bbb F. y=Ax,kF. ⇒ \Rightarrow y k = A x k = A ( x k ) yk=Axk=A(xk) yk=Axk=A(xk)
观察:
A x = [ α 1 , α 2 , ⋯   , α n ] [ x 1 x 2 ⋮ x n ] = α 1 x 1 + α 2 x 2 + ⋯ + α n x n Ax=\left[ {\alpha_1,\alpha_2, \cdots ,\alpha_n} \right]\begin{bmatrix} x_1 \\ x_2\\ \vdots \\ x_n\\ \end{bmatrix}=\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n Ax=[α1,α2,,αn] x1x2xn =α1x1+α2x2++αnxn ( a i ∈ F m ) (a_i\in \Bbb F^m) (aiFm)
A x Ax Ax 就是 A A A 的列向量组用 x x x 当系数所作的线性组合。
i m A imA imA 也就是 A A A 的列向量所张成的子空间。
K e r A KerA KerA ⇒ \Rightarrow A x = 0 Ax=0 Ax=0 的解空间——m个方程n个未知数( F n 的子空间 \Bbb F^n的子空间 Fn的子空间
i m A imA imA ⇒ \Rightarrow A A A 的列向量所张成的子空间。——像空间,也就是 A A A 固定,让 x x x跑个遍,跑出来的像( F m 的子空间 \Bbb F^m的子空间 Fm的子空间

5 例4:子空间的交与和(满足维数定理)

U U U W W W V V V 的子空间
(1) U ∩ W U\cap W UW 也是子空间。
(2) U + W = s p a n { U , W } = { u + w ∣ u ∈ U , w ∈ W } U+W=span\{U,W\}=\{u+w|u\in U,w\in W\} U+W=span{U,W}={u+wuU,wW} 也是子空间。
证明:
(1)取 e 1 ∈ U ∩ W , e 2 ∈ U ∩ W e_1\in U \cap W,e_2\in U \cap W e1UW,e2UW,有 e 1 ∈ U , e 1 ∈ W , e 2 ∈ U , e 2 ∈ W e_1\in U,e_1\in W,e_2\in U,e_2\in W e1U,e1W,e2U,e2W.
e 1 + e 2 ∈ U e_1+e_2\in U e1+e2U U U U V V V的子空间), e 1 + e 2 ∈ W e_1+e_2\in W e1+e2W W W W V V V的子空间)
e 1 + e 2 ∈ U ∩ W e_1+e_2\in U\cap W e1+e2UW ⇒ \Rightarrow 对加法封闭。
e ∈ U ∩ W e\in U \cap W eUW,有 e ∈ U , e ∈ W e\in U,e\in W eU,eW,取 k ∈ F k\in \Bbb F kF
e k ∈ U , e k ∈ W ek\in U,ek\in W ekU,ekW
e k ∈ U ∩ W ek\in U\cap W ekUW ⇒ \Rightarrow 对数乘法封闭。
(2)取 α 1 = u 1 + w 1 ∈ U + W , u 1 ∈ U , w 1 ∈ W \alpha_1=u_1+w_1\in U+W, u_1\in U,w_1\in W α1=u1+w1U+W,u1U,w1W
α 2 = u 2 + w 2 ∈ U + W , u 2 ∈ U , w 2 ∈ W \alpha_2=u_2+w_2\in U+W, u_2\in U,w_2\in W α2=u2+w2U+W,u2U,w2W
u 1 + u 2 ∈ U u_1+u_2\in U u1+u2U w 1 + w 2 ∈ W w_1+w_2\in W w1+w2W
α 1 + α 2 = ( u 1 + u 2 ) + ( w 1 + w 2 ) ∈ U + W \alpha_1+\alpha_2=(u_1+u_2)+(w_1+w_2)\in U+W α1+α2=(u1+u2)+(w1+w2)U+W ⇒ \Rightarrow 对加法封闭
α = u + w ∈ U + W \alpha=u+w\in U+W α=u+wU+W u ∈ U , w ∈ W u\in U,w\in W uU,wW k ∈ F k\in \Bbb F kF,
α k = ( u + w ) k = u k + w k ∈ U + W \alpha k=(u+w)k=uk+wk\in U+W αk=(u+w)k=uk+wkU+W ⇒ \Rightarrow 对数乘法封闭

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值