每日一题 3.29

该文是关于计算一个n*m棋盘中正方形和长方形数量的算法问题。通过枚举边长,可以得出正方形的数量为(n-i)*(m-i),总数量为n*(n+1)*m*(m+1)/4,减去正方形数量得到长方形数量。给定一个2*3的棋盘示例,展示了具体的计数结果。
摘要由CSDN通过智能技术生成

棋盘方格

题目描述

设有一个n*m方格的棋盘(1≤m,n≤100)。

求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。

例如:

       当n=2,m=3时

正方形的个数有8个,即边长为1的正方形有6个,边长为2的正方形有2个。

长方形的个数有10个:

2*1的长方形有4个;

1*2的长方形有3个;

3*1的长方形有2个;

3*2的长方形有1个。

输入格式

每个测试文件只包含一组测试数据,每组输入两个正整数n和m。

输出格式

对于每组输入数据,出该棋盘中包含的正方形个数和长方形个数。

样例

输入数据 1

2 3

Copy

输出数据 1

8 10

 解题思路:

这题其实就是考虑边长的取值情况。

设长边为n,短边为m。长边的取值情况有:1,2,3,4....n 共n种取值   短边的取值情况有:1,2,3...m共m种取值。那在n*m棋盘中能取的矩形就有(n*(1+n)/2)*(m*(m+1)/2)种情况,找到正方形的数量,用总的减去正方形的就为长方形的数量。

正方形的数量:从边长为1开始枚举至短边m,长边中长度为1有n种取法,短边有m种,共n*m种;

边长为2,长边有n-1种取法,短边有m-1种,共(n-1)*(m-1)...

找到规律:边长为i的正方形有(n-i)*(m-i)种取法

解题代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,m,M,ans1=0,sum;
int main()
{ cin>>n>>m;
  if(n<m) 
     M = n;
  else M = m;
  sum =n*(n+1)*m*(m+1)/4;
	for(int i=0;i <=M;i++)
	   ans1 += (n-i)*(m-i);
	
	cout<<ans1<<" "<<sum-ans1; 
	return 0;
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值