棋盘方格(每日一题8)

该问题涉及计算一个n*m的棋盘中正方形和长方形的数量。程序通过遍历棋盘的每个单元格,累计不同大小的正方形数量,并计算总的矩形数量。正方形数量是通过取i和j的最小值累加得到,长方形数量则为总矩形数量减去正方形数量。
摘要由CSDN通过智能技术生成

设有一个n*m方格的棋盘(1≤m,n≤100)。

求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。

例如:

       当n=2,m=3时

正方形的个数有8个,即边长为1的正方形有6个,边长为2的正方形有2个。

长方形的个数有10个:

2*1的长方形有4个;

1*2的长方形有3个;

3*1的长方形有2个;

3*2的长方形有1个。

输入格式

每个测试文件只包含一组测试数据,每组输入两个正整数n和m。

输出格式

对于每组输入数据,出该棋盘中包含的正方形个数和长方形个数。

        对于这一道题,只需搞明白-------矩形数量=正方形数量+长方形数量

将矩形数量sum求出来,在把正方形数量求出即可。

AC代码

#include<bits/stdc++.h>
using namespace std;

long long zheng, chang, sum;
				// 在本题目中:矩形数量=正方形数量+长方形数量
int main()
{
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= m; j++)
		{
			zheng += min(i, j);//正方形数量
			sum += i * j;
		}
	}
	chang = sum - zheng;
	cout << zheng << ' ' << chang << endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值