数据结构初阶

目录

1. 什么是数据结构?

2.什么是算法?

3.如何学习数据结构和算法

算法的时间复杂度和空间复杂度

1.算法效率

1.1 如何衡量一个算法的好坏

1.2 算法的复杂度

2.时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算举例

 

3.空间复杂度

4. 常见复杂度对比


 

1. 数据结构的基本概念

 

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的
数据元素的集合。

2.什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

3.如何学习数据结构和算法

  1. 多敲代码
  2. 注意画图和思考

算法的时间复杂度和空间复杂度

1.算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列

long long Fib(int N) 
{
     if(N < 3)
     return 1;
 
     return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
 

1.2 算法的复杂度

算法在编写成可执行程序后,运行时要耗费时间资源和空间(内存)资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数(是数学中带未知函数的表达式,并不是库函数),它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N) 
{
    int count = 0;
    for (int i = 0; i < N ; ++ i) 
    {
         for (int j = 0; j < N ; ++ j)
         {
             ++count;
         }
    }
 
    for (int k = 0; k < 2 * N ; ++ k) 
    {
         ++count; 
    }
    int M = 10;
    while (M--) 
    {
     ++count; 
    }
    printf("%d\n", count);
}
Func1 执行的基本操作次数 :F(N)=N^2+2N+10
我们考虑的是当N非常大的情况下,起作用的就是N^2,后面的影响就不是很大了
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法。

2.2 O的渐进表示法

O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大 O 阶方法:
1、用常数1取代运行时间中的所有加法常数。(只是估算不需要太精确源自CPU运算特别快)
2、在修改后的运行次数函数中,只保留最高阶项。(其他项影响不大)
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数(就是系数)。得到的结果就是大O阶。(因为当N非常大系数就没有多大影响)
 
使用大O的渐进表示法以后,Func1的时间复杂度为:o(N^2)
通过上面我们会发现大O的渐进表示法 去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数,O是一个估算,代表是一个复杂度。

 

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)

2.3常见时间复杂度计算举例

实例一

// 计算Func2的时间复杂度?
void Func2(int N) 
{
     int count = 0;
     for (int k = 0; k < 2 * N ; ++ k)
     {
         ++count;
     }
     int M = 10;
     while (M--)
     {
         ++count;
     }
     printf("%d\n", count);
}

准确的是0(2N+10),估算后(N),去除系数保留最高阶

实例二

// 计算Func3的时间复杂度?
void Func3(int N, int M) 
{
     int count = 0;
     for (int k = 0; k < M; ++ k)
     {
         ++count;
     }
     for (int k = 0; k < N ; ++ k)
     {
         ++count;
     }
     printf("%d\n", count);
}

准确的是O(M+N),估算后O(N+M),同阶都不去除

实例三

// 计算Func4的时间复杂度?
void Func4(int N) 
{
     int count = 0;
     for (int k = 0; k < 100; ++ k)
     {
         ++count;
     }
     printf("%d\n", count);
}

准确的是O(100),估算后O(1),用常数1取代所有加法常数,源自CPU运算特别快

实例四
查找字符,N代表字符个数
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
d5712a0f04a74a7488b1021a12a13666.png

 

实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)

实例五

 

// 计算BubbleSort的时间复杂度?
//冒泡排序
void BubbleSort(int* a, int n)
 {
     assert(a);
     for (size_t end = n; end > 0; --end)//n趟,一趟把一个数字排好
     {
               //这是一趟,要比较几次
             int exchange = 0;
             for (size_t i = 1; i < end; ++i)
             {
                 if (a[i-1] > a[i])
                 {
                     Swap(&a[i-1], &a[i]);
                     exchange = 1;
                 }
                 
             }
             if (exchange == 0)
                 break;
    }
}
最坏:N-1 N-2 N-3    1 ,等差数列和为N*(N+1)/2
基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最 坏,时间复杂度为 O(N^2)
 

实例六

二分查找,必须是有序数列

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) 
{
     assert(a);
     int begin = 0;
     int end = n-1;
     // [begin, end]:begin和end是左闭右闭区间,因此有=号
     while (begin <= end)
     {
         int mid = begin + ((end-begin)>>1);
         if (a[mid] < x)
             begin = mid+1;
         else if (a[mid] > x)
             end = mid-1;
         else
             return mid;
     }
     return -1; 
}
基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN,其他底数不能省略。
 
每次查找都缩小一半的空间,N/2/2/2/2/2等=1
假设查找x次,N=1*2*2*2等 N=2^x
x=logN

实例七

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
 {
     if(0 == N)
         return 1;
     for(size-t i=0;i<N;i++)
     {
            
     }
 
     return Fac(N-1)*N; 
}
 
先找递归调用次数,中间有循环,看每次递归调用的执行次数累加,已经把调用次数加进去了。
 
实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N^2)。
 
e1d1c6b5cff947d58ef8071f152010c3.png

 

如果去掉中间的循环,递归调用了N次,每次执行了常数次,累加就成了O(n)

实例八

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
 {
     if(N < 3)
         return 1;
 
     return Fib(N-1) + Fib(N-2);
 }
通过计算分析发现基本操作递归了2^N次,每次执行了常数次,时间复杂度为O(2^N)。
014c15607ef14d48905efd795e8bf21d.png

 

Fib(N-1)和Fib(N-2)是共用一块空间,空间是可以重复利用的,空间复杂度为
0 1 2 到N-2,总共调用N-1个空间,空间复杂度为O(N)
时间是一去不复返的
空间是可以重复利用
b54a9168f79647dcb4b65c817ea682f3.jpeg

 

3.空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。主要看创建的空间
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例一
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n) 
{
     assert(a);
     for (size_t end = n; end > 0; --end)
     {
         int exchange = 0;
         for (size_t i = 1; i < end; ++i)
         {
             if (a[i-1] > a[i])
             {
                 Swap(&a[i-1], &a[i]);
                 exchange = 1;
             }
         }
         if (exchange == 0)
             break;
     }
}
创建了2个变量,使用了常数个额外空间,所以空间复杂度为 O(1)

实例二

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
 {
     if(n==0)
         return NULL;
 
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
         fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
     }
     return fibArray; 
}
开辟了N+常数个空间,空间复杂度为 O(N)

实例三

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N) 
{
     if(N == 0)
         return 1;
 
     return Fac(N-1)*N;
 }
每次递归调用变量个数累加
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
7714357aa39045d5ae97280010e8558e.png

 

4. 常见复杂度对比

3141378dfb89411caaf499c54a099373.png

 

 

 
 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值