目录
1. 数据结构的基本概念
数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的
数据元素的集合。
2.什么是算法?
算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。
3.如何学习数据结构和算法
- 多敲代码
- 注意画图和思考
算法的时间复杂度和空间复杂度
1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2 算法的复杂度
算法在编写成可执行程序后,运行时要耗费时间资源和空间(内存)资源 。因此
衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
2.时间复杂度
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中,
算法的时间复杂度是一个函数(是数学中带未知函数的表达式,并不是库函数),它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,
算法中的基本操作的执行次数,为算法
的
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
Func1
执行的基本操作次数 :F(N)=N^2+2N+10
我们考虑的是当N非常大的情况下,起作用的就是N^2,后面的影响就不是很大了
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要
大概执行次数,那么这
里我们使用大
O
的渐进表示法。
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号
推导大
O
阶方法:
1、用常数1取代运行时间中的所有加法常数。(只是估算不需要太精确源自CPU运算特别快)
2、在修改后的运行次数函数中,只保留最高阶项。(其他项影响不大)
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数(就是系数)。得到的结果就是大O阶。(因为当N非常大系数就没有多大影响)
使用大O的渐进表示法以后,Func1的时间复杂度为:o(N^2)
通过上面我们会发现大O的渐进表示法
去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数,O是一个估算,代表是一个复杂度。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为
O(N)
2.3常见时间复杂度计算举例
实例一
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
准确的是0(2N+10),估算后(N),去除系数保留最高阶
实例二
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
准确的是O(M+N),估算后O(N+M),同阶都不去除
实例三
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
准确的是O(100),估算后O(1),用常数1取代所有加法常数,源自CPU运算特别快
实例四
查找字符,N代表字符个数
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
实例五
// 计算BubbleSort的时间复杂度?
//冒泡排序
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)//n趟,一趟把一个数字排好
{
//这是一趟,要比较几次
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
最坏:N-1 N-2 N-3 1 ,等差数列和为N*(N+1)/2
基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最 坏,时间复杂度为 O(N^2)
实例六
二分查找,必须是有序数列
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}
基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN,其他底数不能省略。
每次查找都缩小一半的空间,N/2/2/2/2/2等=1
假设查找x次,N=1*2*2*2等 N=2^x
x=logN
实例七
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
for(size-t i=0;i<N;i++)
{
}
return Fac(N-1)*N;
}
先找递归调用次数,中间有循环,看每次递归调用的执行次数累加,已经把调用次数加进去了。
实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N^2)。
如果去掉中间的循环,递归调用了N次,每次执行了常数次,累加就成了O(n)
实例八
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
通过计算分析发现基本操作递归了2^N次,每次执行了常数次,时间复杂度为O(2^N)。
Fib(N-1)和Fib(N-2)是共用一块空间,空间是可以重复利用的,空间复杂度为
0 1 2 到N-2,总共调用N-1个空间,空间复杂度为O(N)
时间是一去不复返的
空间是可以重复利用
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中
临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。主要看创建的空间
空间复杂度计算规则基本跟实践复杂度类似,也使用
大
O
渐进表示法。
注意:
函数运行时所需要的栈空间
(
存储参数、局部变量、一些寄存器信息等
)
在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例一
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
创建了2个变量,使用了常数个额外空间,所以空间复杂度为 O(1)
实例二
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
开辟了N+常数个空间,空间复杂度为 O(N)
实例三
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
每次递归调用变量个数累加
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
4. 常见复杂度对比