huggingface下载模型网络不能连接

文章讲述了在尝试使用`gitclone`从HuggingFace获取shibing624/text2vec-base-chinese模型时遇到的连接问题,提供了使用`hf-mirror.com`替代`huggingface.co`以直接下载的解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 解决Hugging Face模型下载连接超时的方法 当尝试从 Hugging Face 下载大型模型时,可能会遇到 `ConnectionError` 或者读取超时错误[^1]。这通常是因为网络不稳定或者是服务器端的压力过大造成的。 #### 方法一:调整环境变量设置 通过修改环境变量来增加请求的超时时间可以有效缓解这一问题。可以在 Python 脚本中加入如下代码片段: ```python import os os.environ['HF_HUB_TIMEOUT'] = '60' # 设置超时时间为60秒 ``` 这种方法适用于临时性的解决方案,在脚本执行期间生效[^2]。 #### 方法二:使用代理或镜像站点 如果直接访问 huggingface.co 的速度较慢或者频繁断开,则考虑配置 HTTP/HTTPS 代理服务,或是寻找国内可用的镜像源进行加速下载。部分开发者反馈这种方式能够显著改善下载体验[^3]。 #### 方法三:分批加载模型组件 对于特别庞大的预训练模型,可以选择只加载必要的权重参数而不是整个模型结构。这样不仅可以减少初次加载所需的时间和带宽资源消耗,也能降低因单次传输数据量过大而导致失败的风险。 例如,利用 Transformers 库中的 `from_pretrained()` 函数并指定仅加载特定层或模块: ```python from transformers import BertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese', output_hidden_states=True) ``` 以上措施有助于提高成功获取远程存储于 Hugging Face 上面的大规模机器学习模型的概率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值