第二十三次总结

文章讲述了两道编程竞赛题目,USACO的BuildingRoads和单源最短路径问题。第一题提到题目与另一题相似,只需修改部分代码,主要涉及图的构建和并查集操作。第二题讨论了单源最短路径问题的优化,从弱化版到标准版的升级,通过引入优先队列(堆)提高寻找最小值的效率,提供了Dijkstra算法的实现。
摘要由CSDN通过智能技术生成

P2872 [USACO07DEC]Building Roads S

传送门已部署
这个题和P1991 无线通讯网很像,几乎是一模一样,只需要更换部分代码就好了,思路就不解释了

#include<bits/stdc++.h>
using namespace std;
#define maxn 1000005
typedef double dd;
int n,m,a,b,tot=0,fa[maxn];
dd ans=0;
struct arr{
    int fr,to;
    double w;
}edge[maxn];
struct brr{
    double x,y;
}point[maxn];
void add(int u,int v,double w){
    edge[++tot].fr=u;
    edge[tot].to=v;
    edge[tot].w=w;
}
dd abc(dd x1,dd x2,dd y1,dd y2){
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); 
}
int cmp(arr x,arr y){
    return x.w<y.w;
}
void init(){
    for(int i=1;i<=n;i++)
    fa[i]=i;
    return ;
}
int find(int x){
    if(fa[x]==x)
    return x;
    else{
        fa[x]=find(fa[x]);
        return fa[x];
    }
    
}
int getf(int v){
    if(fa[v]==v)
    return v;
    else{
    fa[v]=getf(fa[v]);
    return fa[v];
    }
}
int merge(int x,int y){
    int t1=getf(x);
    int t2=getf(y);
    if(t1!=t2){
        fa[t2]=t1;
        return 1;
    }
    else
    return 0;
}
void k(){
    int cout=0;
    for(int i=1;i<=tot;i++){
        if(merge(edge[i].fr,edge[i].to))    {
            ans+=edge[i].w;
            cout++;
        }
        if(cout==n-1)
        break;
    }
}
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    scanf("%lf%lf",&point[i].x,&point[i].y);
    for(int i=1;i<=m;i++){
        scanf("%d%d",&a,&b);    
        add(a,b,0);
    }
    for(int i=1;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            add(i,j,abc(point[i].x,point[j].x,point[i].y,point[j].y));
        }
    }
    sort(edge+1,edge+tot+1,cmp);
    init();
    k();
    printf("%.2f\n",ans);
} 

P4779 【模板】单源最短路径(标准版)

传送门已部署

这个题是P3371 【模板】单源最短路径(弱化版)的升级版,我用弱化版的直接提交的话,只有16分,主要就是卡在了找最小值的这里,因为我们都去试了一遍全部的值,所以说就要优化

队列,它们是先入先出的,这很容易用平常的排队来理解。但是如果这个队列要支持有紧急情况的人先出队呢?原先那种队列就不再适用了,我们需要使用本文所提到的特殊队列---优先队列

推荐视频:b站BV1P64y1h7dk

我们因此引出用优先队列,来按照我们特定的规定来形成我们的堆

使用堆,来找到一个一个的最小值,这样就节省了时间

思路没有变,只是实现过程变了

#include<bits/stdc++.h>
using namespace std;
#define maxn 500005
#define mod 2147483647111
typedef long long ll;
struct arr{
	ll v,w,next;
}g[maxn];
int n,m,s,tot=0,dis[maxn];
ll x,y,z,head[maxn];
void add(int u,int v,int w){
	tot++;
	g[tot].v=v;
	g[tot].w=w;
	g[tot].next=head[u];
	head[u]=tot;
}
void init(){
	for(int i=1;i<=n;i++)
	dis[i]=;
	dis[s]=0;
	return ;
}
struct node{
	ll d,u;//d为距离,u是起点 
	bool operator<(const node&t)const{
		return d>t.d;
	} 
};
void Dijkstra(){
	priority_queue<node>q;
	q.push((node){0,s});
	while(!q.empty()){
		node tmep=q.top();
		q.pop();
		ll u=tmep.u,d=tmep.d;
		if(d!=dis[u])
		continue;
		 for(int i=head[u];i;i=g[i].next){
		 	ll v=g[i].v,w=g[i].w;
			 if(dis[u]+w<dis[v]){
			 	dis[v]=dis[u]+w;
			 	q.push((node){dis[v],v});
			 }	
		 }
	} 
}
int main(){
	scanf("%d%d%d",&n,&m,&s);
	for(int i=1;i<=m;i++){
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z);
	}
	init();
	Dijkstra();
	for(int i=1;i<=n;i++)
	printf("%llu ",dis[i]);
}

可以参考这个视频理解:BV1Kq4y147ac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值