机器学习————SVM

目录

一、SVM

1.1 概述

1.2 四种分隔的情况

1.3 最大间隔与分类

1.4 对偶问题:等式约束

1.5 核函数

二、实现

2.1 数据集介绍

2.2 代码

2.2.1 数据可视化部分

2.2.2 SMO实现

2.2.3 结果

三、总结


一、SVM

1.1 概述

支持向量机(Support Vector Machine,简称SVM)是一种经典的机器学习算法,它在解决小样本、非线性及高维模式识别等问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
是一种二分类模型,监督性学习。目的是找到集合边缘上的若干数据(支持向量)用这些点找出一个平面(决策面)使支持向量到该平面的距离最大。

1.2 四种分隔的情况

此外,我们将详细介绍一些线性可分的情况

如上图所示,在图A中的两组数据已经分的足够开,因此很容易就可以画一条直线将两组数据点分开。
这种情况下,这组数据就被称为线性可分数据。

将数据集分开的直线称为分割超平面。当数据点都在二维平面上时,分割超平面只是一条直线。当数据集是三维时就是一个平面。如果数据集是N维的,那么就需要N-1维的某某对象对数据进行分割。该对象就被称为超平面也是分类的决策边界。

根据这种方法我们构造一个分类器,如果数据点离决策边界越远,那么其最后的预测结果也就越可信

点到分割线的距离称为间隔
支持向量就是离分隔超平面最近的那些点。

1.3 最大间隔与分类

什么样的决策边界才是最好的呢?
首先我们引入
超平面方程:

w^Tx+b=0

对于线性可分的数据集来说,超平面有许多个,但几何间隔最大的分离超平面是唯一的。
① 两类样本分别分割在超平面的两侧
② 两侧距离超平面最近的样本点到超平面的距离被最大化

x=(x_1,x_2,\ldots\ldots x_n)

到直线

w^Tx+b=0

距离为

\frac{(w^Tx+b)}{||w||}

其中

||w||=\sqrt{w_1^2+\ldots\ldots+w_n^2}

\begin{cases}&\frac{(w^Tx+b)}{||w||}\geq d,y=1\\&\frac{(w^Tx+b)}{||w||}\leq-d,y=-1\end{cases}

支持向量(正、负)之差为

\frac2{||w||}

则最大间隔转化为求其最大值

arg\max_{w,b}\frac2{||w||}

arg\min_{w,b}\frac12||w||^2

1.4 对偶问题:等式约束

引入拉格朗日函数:

L(x,\lambda)=f(x)+\lambda g(x)

可将原本约束条件转换为

\min_{x,\lambda}L(x,\lambda)

分别求偏导得

\begin{cases}&\nabla_xL=\nabla f+\lambda\nabla g=0\\&\nabla_\lambda L=g(X)=0\end{cases}

转换为KKT条件

\begin{cases}&\nabla_xL=\nabla f+\lambda\nabla g=0\\&g(x)\leq0\\&\lambda\geq0\\&\lambda g(x)=0\end{cases}

通过SMO优化求得最优解

1.5 核函数

将样本从原始空间映射到一个更高维的特征空间, 使得样本在这个特
征空间内线性可分

例如

ax_1^2+bx_2^2+cx_1x_2=1

转化为

w_1z_1+w_2z_2+w_3z_3+b=0

二、实现

2.1 数据集介绍

数据集格式为(x,y,label)

2.2 代码

2.2.1 数据可视化部分

loadDataSet函数:读取文件中的数据,将其加载到数据矩阵和标签矩阵中。

def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat

showDataSetha函数:将数据集以散点图的形式显示出来,区分正样本和负样本。

def showDataSet(dataMat, labelMat):
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) #负样本散点图
    plt.show()

2.2.2 SMO实现

selectJrand函数:随机选择alpha,随机选择一个不等于 i 的整数 j,范围是 [0, m)。

def selectJrand(i, m):
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

clipAlpha函数:修剪alpha,使其保持在 [L, H] 之间

def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

smoSimple函数:实现简化版的SMO算法,用于训练线性SVM

步骤:

  1. 初始化参数 balpha
  2. 在最大迭代次数范围内,不断优化 alpha
  3. 每次从样本中选择 ij 两个不同的样本,计算它们的误差 EiEj
  4. 计算 alpha 的新的值并进行修剪,确保在合法范围内。
  5. 更新 b 值。
  6. 重复上述过程直到满足停止条件。
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    #转换为numpy的mat存储
    dataMatrix = np.mat(dataMatIn); labelMat = np.mat(classLabels).transpose()
    #初始化b参数,统计dataMatrix的维度
    b = 0; m,n = np.shape(dataMatrix)
    #初始化alpha参数,设为0
    alphas = np.mat(np.zeros((m,1)))
    #初始化迭代次数
    iter_num = 0
    #最多迭代matIter次
    while (iter_num < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            #步骤1:计算误差Ei
            fXi = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])
            #优化alpha,更设定一定的容错率。
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                #随机选择另一个与alpha_i成对优化的alpha_j
                j = selectJrand(i,m)
                #步骤1:计算误差Ej
                fXj = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                #保存更新前的aplpha值,使用深拷贝
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                #步骤2:计算上下界L和H
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print("L==H"); continue
                #步骤3:计算eta
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print("eta>=0"); continue
                #步骤4:更新alpha_j
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                #步骤5:修剪alpha_j
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j变化太小"); continue
                #步骤6:更新alpha_i
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])
                #步骤7:更新b_1和b_2
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                #步骤8:根据b_1和b_2更新b
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                #统计优化次数
                alphaPairsChanged += 1
                #打印统计信息
                print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iter_num,i,alphaPairsChanged))
        #更新迭代次数
        if (alphaPairsChanged == 0): iter_num += 1
        else: iter_num = 0
        print("迭代次数: %d" % iter_num)
    return b,alphas

showClassifer函数:绘制数据点和分类超平面,同时标记出支持向量

def showClassifer(dataMat, w, b):
    #绘制样本点
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7)   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) #负样本散点图
    #绘制直线
    x1 = max(dataMat)[0]
    x2 = min(dataMat)[0]
    a1, a2 = w
    b = float(b)
    a1 = float(a1[0])
    a2 = float(a2[0])
    y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
    plt.plot([x1, x2], [y1, y2])
    #找出支持向量点
    for i, alpha in enumerate(alphas):
        if abs(alpha) > 0:
            x, y = dataMat[i]
            plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
    plt.show()

get_w函数:根据 alpha 值和样本计算SVM的权重向量,用于定义分类超平面

def get_w(dataMat, labelMat, alphas):
    alphas, dataMat, labelMat = np.array(alphas), np.array(dataMat), np.array(labelMat)
    w = np.dot((np.tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas)
    return w.tolist()

2.2.3 结果

数据集可视化

SMO算法结果:

三、总结

优点

计算复杂性取决于向量数目而不是样本空间维数
可以处理线性不可分
可实现特征空间划分的最优超平面
简化了回归和分类等问题
抓住了关键样本,具有较好鲁棒性,增删非支持向量样本对模型没有影响

缺点

大规模训练难实施
多分类问题解决困难

  • 28
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值