机器学习————逻辑(logistic)回归

目录

一、logistics回归

1.1 概述

1.2 线性模型与回归

1.2 最小二乘法与参数求解

1.3 Sigmoid函数

1.4 梯度上升法

二、代码实现

2.1 数据集介绍

2.2 实现

2.3 结果

三、总结

3.1 优点

3.2 缺点

一、logistics回归

1.1 概述

logistic回归是一种二分类多分类概率型非线性回归模型,用于研究因变量与影响因素之间的关系。
主要思想是根据现有数据对分类边界线建立回归公式,从而进行分类。与线性回归不同的是,logistics回归的目标是找到最佳拟合参数,以便对不同特征赋予不同的权重

1.2 线性模型与回归

线性模型的一般形式为:

f(x)=w_1x_1+w_2x_2+...+w_dx_d+b


向量化表示为:

f(x)=w^Tx+b

其中x为d维属性描述样本为:

x=(x_1,x_2,\ldots\ldots,x_d)

目的
学习一个线性模型以尽可能准确预测实值输出

f(x)=wx_i+b\simeq y_i

1.2 最小二乘法与参数求解

线性回归目标:回归预测值与真实值的误差最小。公式表示为:

(w^*, b^*)=arg\min_{(w,b)}\sum_{i=1}^m(y_i-f(x_i))^2=arg\min_{(w,b)}\sum_{i=1}^m(y_i-wx_i-b)^2

分别对w和b求偏导得到

\frac{\partial E_{(w,b)}}{\partial w}=2(w\sum_{i=1}^mx_i^2-\sum_{i=1}^m(y_i-b)x_i)=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值