目录
一、logistics回归
1.1 概述
logistic回归是一种二分类或多分类的概率型非线性回归模型,用于研究因变量与影响因素之间的关系。
其主要思想是根据现有数据对分类边界线建立回归公式,从而进行分类。与线性回归不同的是,logistics回归的目标是找到最佳拟合参数,以便对不同特征赋予不同的权重。
1.2 线性模型与回归
线性模型的一般形式为:
向量化表示为:
其中x为d维属性描述样本为:
目的:
学习一个线性模型以尽可能准确预测实值输出
即
1.2 最小二乘法与参数求解
线性回归目标:回归预测值与真实值的误差最小。公式表示为:
分别对w和b求偏导得到