目录
2.6.1 先按yolov5目录中的requirements.txt 下载对应的库
2.6.2 torch与torchvision配置,按照下面博客配置,只看torch部分就好
一、概述
本博客为博主参加2024 中国机器人大赛暨 RoboCup 机器人世界杯中国赛机器人先进视觉3D识别赛道时配置环境所记录的流程的整理,也作为给学弟学妹留下的传承,中间有包括几篇有参考的博客,都有附上链接。部署流程亲测有效!!!
注:我们相机到手两天跑通,这教程是真极速版
二、部署流程
2.1 Jeston nano刷机流程
按照下面流程部署,基本上不会有问题:
tips:
1.刷机的建议还是直接使用sd卡烧录比较快
2.对于对应镜像的寻找:官网:https://developer.nvidia.com/embedded/jetpack-sdk-45-archive(这是4.5的页面,需要其他的可以划到最下面有For older versions of JetPack, please visit the JetPack Archive.点击就可以选自己要的版本,部署的时候一定要按需要的版本下)
2.2 cuda配置
打开home目录下的bashrc(ctrl+h显示隐藏文件)
vim ./bashrc
#在结尾添加
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda10.2/lib64
export PATH=$PATH:/usr/local/cuda10.2/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda10.2
注意cuda版本,不要盲目复制
2.3 换系统源
作用是更换apt下载的源
这边建议直接使用鱼香ros一键换源
sudo wget http://fishros.com/install -O fishros && bash fishros
更换以后使用命令更新软件包
sudo apt-get update
2.4 Archiconda配置、创建
对jeston nano配置conda的平替Archiconda。按照下面博客的流程配就行。需要注意的是,使用bash Archiconda3-0.2.3-Linux-aarch64.sh命令后