图神经网络(GNN)和强化学习(RL)的结合,为解决复杂数据问题带来了强大的助力。GNN以其卓越的图数据表示能力,让我们能够更深入地理解数据,而RL则在决策过程中提供了灵活的策略优化。
这种强强联合不仅推动了图机器学习领域的发展,还激发了许多创新算法和模型的诞生,为应对现实世界中的复杂挑战打开了新局面,在多个领域取得了显著的成果。
为了帮助大家更好地了解这一热点领域,我整理了最新的10篇关于 GNN+强化学习 的论文,全部论文PDF版,工棕号【沃的顶会】回复 GNN强化 即可领取。
Decentralized Cooperation in Heterogeneous Multi-Agent ReinforcementLearning via Graph Neural Network-Based Intrinsic Motivation
文章解析
本文提出了一种名为CoHet的算法,通过图神经网络(GNN)的内在动机机制,解决了异构多智能体系统在部分可观测和奖励稀疏条件下的去中心化合作问题。
CoHet无需预先了解智能体的异质性信息,利用局部邻域信息和动力学模型预测来计算内在奖励,从而促进异构智能体之间的有效合作。
创新点
1.提出了一个新颖的基于图神经网络的内在奖励机制,能够准确估计异构智能体环境中的内在奖励。
2.算法无需预先知道智能体的