在人工智能领域,图神经网络(GNN)与Transformer的结合正成为研究热点,不断涌现出创新成果。这种融合的核心在于利用Transformer的自注意力机制增强GNN的全局信息聚合能力,同时借助GNN的图结构归纳偏置提升Transformer在处理非欧几里得数据时的效率。Exphormer框架通过虚拟全局节点和扩展图等机制,构建了强大且可扩展的图变换器;而TextGT模型则通过GNN层处理文本的图视图,Transformer层处理序列视图,紧密耦合这两个过程以缓解过平滑问题。此外,Gradformer引入指数衰减掩码来整合图的内在归纳偏差,使模型在捕获远距离节点信息的同时,更加关注图的局部细节。
这些创新不仅在多个数据集上显著提升了性能,还为未来的研究提供了新的方向和思路。我整理了10篇关于【GNN+Transformer】的相关论文,全部论文PDF版,工中号 沃的顶会 回复“图神经trans”即可领取
Enhancing Transformer with GNN Structural Knowledge via Distillation: A Novel Approach
文章解析
本文提出了一种新的知识蒸馏框架,旨在将图神经网络(GNN)中的局部结构信息有效地迁移到Transformer架构中。
由于GNN擅长捕获局部拓扑模式而难以建模长程依赖,而Transformer虽具备全局感受野但无法继承图结构先验,文章通过微-宏观蒸馏损失和多尺度特征对齐解决架构差异问题,从而弥合两者之间的表示差距。
创新点
提出了层次化的知识迁移机制,在微观(边级分布对齐)和宏观(图级拓扑匹配)两个层面系统性地将GNN结构偏差转移到Transformer模型。
引入了动态优化范式,采用自适应损失加权方法,在任务驱动监督与结构知识保持之间实现最佳平衡。
理论分析表明该框架可以有效缓解由架构异构引起的“感受野不匹配”问题,为跨模态知识迁移研究提供了新思路。
研究方法
设计了一个从教师GNN到学生Transformer的知识蒸馏系统,通过层级蒸馏机制实现跨架构知识迁移。
利用微-宏观蒸馏损失函数结合多尺度特征对齐策略,桥接图神经网络与Transformer之间的几何-语义鸿沟。
支持异构教师架构(如GCN/GAT/GraphSAGE)向Transformer稳定蒸馏。
通过理论推导验证了多尺度对齐机制在解决架构异构性问题上的有效性。
研究结论
所提出的多尺度结构蒸馏框架成功实现了将GNN结构先验注入Transformer架构的目标。
实验结果表明该方法在保留Transformer全局建模能力的同时,增强了其对图结构信息的理解能力。
该方法为构建具有图感知能力的Transformer模型提供了新范式,并展现出广泛的应用前景。
A Hybrid Similarity-Aware Graph Neural Network with Transformer for Node Classification
文章解析
本文提出了SIGNNet,这是一种结合图卷积网络(GCN)和Transformer的新框架,用于解决节点分类任务中的挑战。传统方法如GCNs在处理长距离依赖时存在过拟合问题,而Graph Transformers面临计算效率和信息不相关的问题。
SIGNNet通过引入基于个性化PageRank的采样技术、结构感知的多头注意力机制(SA-MHA),以及结合局部和全局信息的方法,有效提升了模型性能,特别是在大规模异构图上的表现。
创新点
提出了一种新的基于Personalized PageRank的节点采样方法,以解决大规模图数据的可扩展性问题。
设计了结构感知的多头注意力机制(SA-MHA),将节点特征相似性和图结构信息相结合,提升注意力机制的准确性。
采用类中心特征和连接得分来增强节点表示,更好地捕捉语义和结构关系。
构建了一个综合GCN和Transformer优点的混合框架SIGNNet,显著提高了节点分类的性能。
在多个真实数据集上验证SIGNNet的有效性,平均准确率提升显著优于现有方法。
研究方法
使用图卷积网络(GCN)聚合局部结构信息,并通过兼容性矩阵捕捉全局相似性。
引入类中心特征和节点连接得分来增强节点表示,提高模型区分能力。
基于Personalized PageRank算法进行子图采样,降低输入规模并提升可扩展性。
开发结构感知的多头注意力机制(SA-MHA),结合节点特征与图结构优化注意力权重。
在Cora, Citeseer, CS, Wisconsin, Texas, Actor, Cornell和Chameleon等多个数据集上进行实验,评估模型性能。
研究结论
SIGNNet框架在节点分类任务中表现出色,在多个数据集上均取得显著的准确率提升。
提出的结构感知注意力机制(SA-MHA)有效融合了结构和语义信息,增强了模型表达能力。
基于PPR的子图采样策略成功解决了Graph Transformer的可扩展性问题。
SIGNNet展示了其在处理同质图和异质图方面的强大能力,尤其是在异质图中克服了GCNs的局限性。
该方法为未来图深度学习模型的设计提供了新的思路,特别是在结合局部和全局信息方面具有广泛的应用前景。