动态规划问题——青蛙跳台阶案例分析

问题描述:

一只青蛙要跳上n级台阶,它每次可以跳 1级或者2级。问:青蛙有多少种不同的跳法可以跳完这些台阶?

举个例子:

假设台阶数 n = 3 ,我们来看看青蛙有多少种跳法。 

可能的跳法:
1. 跳1级,再跳1级,再跳1级。(1+1+1)
2. 跳1级,再跳2级。(1+2)
3. 跳2级,再跳1级。(2+1)

所以,当 n = 3 时,总共有 3种跳法。

规律是什么?

我们可以发现,青蛙跳到第 \( n \) 级台阶的跳法数,取决于它跳到前两级台阶的跳法数:
1. 如果青蛙最后一步跳 1级,那么它之前一定是从第 n-1 级跳上来的。
2. 如果青蛙最后一步跳 2级,那么它之前一定是从第 n-2 级跳上来的。 

递推公式: 

f(n) = f(n-1) + f(n-2)
其中:
 f(1) = 1 (只有1级台阶,只有一种跳法)
 f(2) = 2 (2级台阶,可以跳1+1,或者直接跳2) 

具体计算:

我们用一个表格来计算 \( f(n) \) 的值: 

台阶数n跳法数f(n)计算方式
11只有一种跳法:1
22两种跳法:1+1或2
33f(2)+f(1)=2+1
45f(3)+f(2)=3+2
58f(4)+f(3)=5+3
.........

代码实现:

用代码来计算f(n)的值: 

#include <stdio.h>

// 定义函数计算跳上 n 级台阶的跳法数
int jump_ways(int n) {
    if (n <= 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else if (n == 2) {
        return 2;
    }

    // 初始化前两级台阶的跳法数
    int prev1 = 1; // f(1) = 1
    int prev2 = 2; // f(2) = 2
    int current;

    // 从第3级开始计算
    for (int i = 3; i <= n; i++) {
        current = prev1 + prev2;
        prev1 = prev2;
        prev2 = current;
    }

    return prev2;
}

int main() {
    // 示例
    int n = 5;
    printf("跳上 %d 级台阶的跳法数:%d\n", n, jump_ways(n));
    return 0;
}

输出:

跳上 5 级台阶的跳法数:8 

总结:

 跳到第 n 级台阶的跳法数,等于跳到第 n-1 级的跳法数,加上跳到第n-2级的跳法数。
- 这个规律和斐波那契数列是一样的。
- 通过动态规划,我们可以高效地计算出结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值