声明:
本文内容来自于对DataWhale的开源学习项目——免费GPU线上跑AI项目实践的学习,引用了多处DataWhale给出的教程
初始化开发环境:
把这里的镜像换成
添加开发端口,使服务器上的应用程序能够与外部进行通信。
对于ChatGPT模型的部署,通常需要使用网络接口来接收用户的请求,并将响应发送回用户。因此,需要在云服务器上设置一个开放端口,以便用户可以通过该端口与ChatGPT模型进行通信。
TCP 77是一个示例端口号,实际上可以根据需要选择不同的端口号。在部署时,你需要确保所选择的端口号未被其他应用程序占用,并且在服务器的防火墙或网络安全组中允许该端口的流量通过。
进入开发环境,进入 ChatGLM2-6B/requirements.txt,增加如下内容并保存:
rouge_chinese
nltk
jieba
datasets
切换至网页终端,并执行如下命令
pip install -r ChatGLM2-6B/requirements.txt -i https://pypi.virtaicloud.com/repository/pypi/simple
加载模型:
切换至 JupyterLab。修改 cli_demo.py 中模型的地址,将 THUDM/chatglm2-6b
替换为 /gemini/data-2
切换至 网页终端。执行如下命令唤醒交互式对话。等待最终 Loading checkpoint shards: 100%
且返回 用户:
字样
在 用户:
行输入您的问题并回车,等待 ChatGLM 回答您的问题。 ChatGLM:
行若有相应信息返回,则成功
ps:好奇为什么会好端端的突然冒出个中文???就散文的那里