【算法】唯一分解定理及最lcm和gcd关系 宝石组合

文章介绍了如何利用唯一分解定理推导出最小公倍数和最大公约数的公式,并将其应用于一个宝石组合问题中,通过编程求解精美程度最高的宝石组合策略。关键步骤包括计算每个宝石的约数并找出满足条件的三个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

今天在做一道宝石组合的题目时了解到了这个定理,还是蛮有意思的。

思想

唯一分解定理:
对于任何正整数n,有
n = p 1 a 1 × p 2 a 2 × . . . × p k a k n = p_1^{a1} \times p_2^{a2} \times ... \times p_k^{ak} n=p1a1×p2a2×...×pkak
其中,pi为质因子

基于这个定理,我们推广出关于最小公倍数(LCM)和最大公约数(GCD)的两个公式:
设两个正整数:n,m
l c m ( n , m ) = p 1 m a x ( a 1 , b 1 ) × p 2 m a x ( a 2 , b 2 ) × . . . × p k m a x ( a k , b k ) lcm(n,m) = p_1^{max(a1,b1)} \times p_2^{max(a2,b2)} \times... \times p_k^{max(ak,bk)} lcm(n,m)=p1max(a1,b1)×p2max(a2,b2)×...×pkmax(ak,bk)

g c d ( n , m ) = p 1 m i n ( a 1 , b 1 ) × p 2 m i n ( a 2 , b 2 ) × . . . × p k m i n ( a k , b k ) gcd(n,m) = p_1^{min(a1,b1)} \times p_2^{min(a2,b2)} \times... \times p_k^{min(ak,bk)} gcd(n,m)=p1min(a1,b1)×p2min(a2,b2)×...×pkmin(ak,bk)

同理可以推出:
n × m = l c m ( n , m ) × g c d ( n , m ) n \times m = lcm(n,m) \times gcd(n,m) n×m=lcm(n,m)×gcd(n,m)

宝石组合

题目

在一个神秘的森林里,住着一个小精灵名叫小蓝。有一天,他偶然发现了一个隐藏在树洞里的宝藏,里面装满了闪烁着美丽光芒的宝石。这些宝石都有着不同的颜色和形状,但最引人注目的是它们各自独特的 “闪亮度” 属性。每颗宝石都有一个与生俱来的特殊能力,可以发出不同强度的闪光。小蓝共找到了N 枚宝石,第 i 枚宝石的 “闪亮度” 属性值为 Hi,小蓝将会从这 N 枚宝石中选出三枚进行组合,组合之后的精美程度 S 可以用以下公式来衡量:

在这里插入图片描述

其中 LCM 表示的是最小公倍数函数。小蓝想要使得三枚宝石组合后的精美程度 S 尽可能的高,请你帮他找出精美程度最高的方案。如果存在多个方案 S 值相同,优先选择按照 H 值升序排列后字典序最小的方案。

题目分析

基于上面的分析,对给出的公式尝试化简:
S = ∏ i = 1 k p i a i + b i + c i × p i m a x ( a i , b i , c i ) p i m a x ( a i , b i ) × p i m a x ( a i , c i ) × p i m a x ( b i , c i ) S = \prod_{i=1}^{k} p_i^{a_i+b_i+c_i} \times \frac{p_i^{max(a_i,b_i,c_i)}}{p_i^{max(a_i,b_i)} \times p_i^{max(a_i,c_i)} \times p_i^{max(b_i,c_i)}} S=i=1kpiai+bi+ci×pimax(ai,bi)×pimax(ai,ci)×pimax(bi,ci)pimax(ai,bi,ci)

对上述式子进一步化简,可得:
S = ∏ i = 1 k p i a i + b i + c i × p i m a x ( 最大 ) p i m a x ( 最大 ) × p i m a x ( 最大 ) × p i m a x ( 次大 ) S = \prod_{i=1}^{k} p_i^{a_i+b_i+c_i} \times \frac{p_i^{max(最大)}}{p_i^{max(最大)} \times p_i^{max(最大)} \times p_i^{max(次大)}} S=i=1kpiai+bi+ci×pimax(最大)×pimax(最大)×pimax(次大)pimax(最大)
最后得到:
S = ∏ i = 1 k p i 最小 = ∏ i = 1 k p i m i n ( a i , b i , c i ) = g c d ( a , b , c ) S = \prod_{i=1}^{k} p_i^{最小} = \prod_{i=1}^{k} p_i^{min(a_i,b_i,c_i)} = gcd(a,b,c) S=i=1kpi最小=i=1kpimin(ai,bi,ci)=gcd(a,b,c)

所以经过化简公式,我们可以得出结论:就是找最大公约数最大的三个数

解答

经过上面的分析,我们有以下的思路:

  • 1、定义一个fac二维数组,fac[i]是一个数组,表示i的所有约数
  • 2、遍历所有a数组,s[a[i]]表示 a[i] 是哪些数的约数。

例如 10 的所有约数为 1 、 2、 5、 10

s[1] = { 10 }
s[2] = { 10 }
s[5] = { 10 }
s[10] = { 10 }

当我们遍历完a数组,倒着遍历s数组,第一次找到超过三个数的s[i],去前三项即是答案。

参考代码

#include<iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 100005;
vector<int> fac[N],s[N];
int a[N];
int main()
{
    int n;
    cin >> n;
    for(int i = 0;i<n;i++){
        cin >> a[i];
    }
    
    for(int i = 1; i<100005 ;i++){
        for(int j = i;j<100005;j+=i){
            fac[j].push_back(i);
        }
    }
    
    sort(a,a+n);
    for(int i = 0;i<n;i++){
        for(auto e : fac[a[i]]){
            s[e].push_back(a[i]);
        }
    }
    
    for(int i =100004;i>=0;i--){
        if(s[i].size() >= 3){
            cout << s[i][0] << " " << s[i][1] << " " << s[i][2] << endl;
            break;
        }
    }
    return 0;
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝色学者i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值