光学系统的衍射极限
1. 定义与物理本质
衍射极限是光学系统中由光的波动性(衍射效应)决定的理论分辨率上限。即使光学系统完美无像差,理想物点经其成像时也无法形成完美像点,而是形成一个由夫琅禾费衍射产生的光斑——艾里斑。艾里斑的大小直接限制系统的最小可分辨距离,斑越大,分辨率越低。
2. 核心公式与参数关系
- 角分辨率公式:
sin θ = 1.22 λ D \sin\theta = 1.22\frac{\lambda}{D} sinθ=1.22Dλ
其中, θ \theta θ 为角分辨率, λ \lambda λ为光波波长, D D D为光学系统的入瞳直径。当 θ \theta θ较小时,可近似为 θ ≈ d / f \theta \approx d/f θ≈d/f,其中 d d d 是最小分辨尺寸, f f f 为焦距。由此推导出:
d = 1.22 λ f D 或 d = 1.22 λ ⋅ A d = 1.22\frac{\lambda f}{D} \quad \text{或} \quad d = 1.22\lambda \cdot A d=1.22Dλf或d=1.22λ⋅A
这里 A = f / D A = f/D A=f/D为光圈值(F数)。当 d d d等于传感器像素尺寸 p p p 时,系统达到衍射极限光圈(DLA),即:
D L A = p 1.22 λ DLA = \frac{p}{1.22\lambda} DLA=1.22λp
该公式表明,波长越短、光圈越大(F数越小),分辨率越高。
3. 影响因素与瑞利判据
- 决定性参数:
衍射极限仅由光波长 λ \lambda λ 和系统孔径 D D D 决定,与像差无关。即使系统无像差,艾里斑的存在仍会导致分辨率限制。 - 瑞利判据:
当两个艾里斑的中心间距等于艾里斑半径时(即一个斑的中心与另一个斑的第一暗环重合),系统刚好能分辨这两个物点。此时对应的MTF(调制传递函数)值约为0.09,被视为分辨率的理论阈值。
4. 实际应用与挑战
- 光学设计:
在相机和显微镜中,需平衡光圈大小与衍射效应。例如,大光圈(小F数)可提升进光量,但会因 D L A DLA DLA 限制导致分辨率下降,需通过优化传感器像素尺寸(如手机摄像头的微透镜设计)缓解此矛盾。 - 显微成像:
传统光学显微镜受限于 λ / 2 \lambda/2 λ/2 的衍射极限(约200 nm),但通过荧光标记、超分辨显微技术(如STED、PALM)可突破这一限制,实现纳米级分辨。
5. 超越衍射极限的技术
- 超级透镜与等离子体技术:
利用贵金属(如银)制成的超透镜激发表面等离子体极化,增强倏逝波的传播,使原本衰减的高频信息参与成像。例如,加州大学伯克利分校的实验通过银膜超透镜实现了 λ / 6 \lambda/6 λ/6 的分辨率(约60 nm)。 - 计算光学成像:
结合算法处理散射或噪声干扰,例如透过烟雾、生物组织等散射介质成像时,利用反向传播算法恢复被散射模糊的图像细节。
6. 总结
衍射极限是光学系统分辨率的物理天花板,由光的波动性本质决定。其核心公式揭示了波长、孔径与分辨能力的定量关系,而现代技术通过材料创新(如超透镜)和计算手段(如算法校正)不断突破这一限制,推动显微、传感和成像领域的进步。