配置环境
AutoDL算力云网站 www.autodl.com/
选一个合适自己的卡,点击立即租用
点击社区镜像在下方输入框输入YOLO搜索
点击yolov8配置环境
创建并开机,创建实例
上传数据集
右上角控制台
容器实例里就有所租用的卡,在此之前可以先上传数据集
之前我们租的实例是哪个区的,下面我们文件存储就点击哪个区然后进行上传数据集,上传压缩包,文件存储在实例中的挂载目录为:/root/autodl-fs,这个我们一会会用到。
回到容器实例,如果已经开机就点击JupyterLab,没有开机的话可以先点击更多,无卡模式开机先配置模型数据集文件。
进入Jupyter我们上传的数据集压缩包就已经到了autodl-fs里面了,现在对他进行解压。
在终端输入以下指令:
先步入到上传到的文件夹内
cd autodl-fs
解压
unzip xxx.zip 直接解压到当前文件夹中
或者
unzip -d xxx.zip 解压到指定文件夹中
我这边是直接解压到当前文件夹里了。
配置数据集参数
点开解压好的数据集,对.yaml文件进行编辑。
path 输入为绝对路径
path: /root/autodl-fs
可以把.yaml放置在本目录下。
训练参数设置
如果没有放在本目录下,data=' '中的内容就改成绝对路径的.yaml
epochs迭代次数,imgsz训练图片大小640*640px,workers线程数,batch一次处理的图片数。
这里的weights可以换成预训练权重以减少一开始的训练时间。
后缀 | 参数量 (Millions) | FLOPs (Billion) | 适用场景 |
---|---|---|---|
n (nano) | ~1.9M (YOLOv8) | ~3.2 | 超轻量级,移动端/嵌入式设备 |
s (small) | ~11.4M (YOLOv8) | ~28.6 | 平衡速度和精度(最常用) |
其他参数,更多可以去网上搜索
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='初始权重路径')
parser.add_argument('--data', type=str, default='coco128.yaml', help='数据集配置文件')
parser.add_argument('--epochs', type=int, default=300, help='训练轮次')
parser.add_argument('--batch-size', type=int, default=16, help='批次大小')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='输入图像尺寸')
args = parser.parse_args()
这样我们的数据集包括训练参数工作就已经做完了,剩下的就是训练了。
打开一开始的.md会有教程也可以直接看下面我打出的代码。
开始训练
在终端输入
cd ultralytics-8.3.27
python train_v8.py --cfg ultralytics/cfg/models/v8/yolov8.yaml
即可开始训练