AutoDL云端直接训练YOLOv8模型,不需要本地部署环境

配置环境

AutoDL算力云网站 www.autodl.com/

选一个合适自己的卡,点击立即租用

点击社区镜像在下方输入框输入YOLO搜索

点击yolov8配置环境
创建并开机,创建实例

上传数据集

右上角控制台

容器实例里就有所租用的卡,在此之前可以先上传数据集

之前我们租的实例是哪个区的,下面我们文件存储就点击哪个区然后进行上传数据集,上传压缩包,文件存储在实例中的挂载目录为:/root/autodl-fs,这个我们一会会用到。

回到容器实例,如果已经开机就点击JupyterLab,没有开机的话可以先点击更多,无卡模式开机先配置模型数据集文件。

进入Jupyter我们上传的数据集压缩包就已经到了autodl-fs里面了,现在对他进行解压。

在终端输入以下指令:

先步入到上传到的文件夹内
cd autodl-fs

解压
unzip xxx.zip 直接解压到当前文件夹中
或者
unzip -d xxx.zip 解压到指定文件夹中

我这边是直接解压到当前文件夹里了。

配置数据集参数

点开解压好的数据集,对.yaml文件进行编辑。

path 输入为绝对路径
path: /root/autodl-fs

可以把.yaml放置在本目录下。

训练参数设置

如果没有放在本目录下,data=' '中的内容就改成绝对路径的.yaml

epochs迭代次数,imgsz训练图片大小640*640px,workers线程数,batch一次处理的图片数。

这里的weights可以换成预训练权重以减少一开始的训练时间。

后缀参数量 (Millions)FLOPs (Billion)适用场景
n (nano)~1.9M (YOLOv8)~3.2超轻量级,移动端/嵌入式设备
s (small)~11.4M (YOLOv8)~28.6平衡速度和精度(最常用)

其他参数,更多可以去网上搜索

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='初始权重路径')
parser.add_argument('--data', type=str, default='coco128.yaml', help='数据集配置文件')
parser.add_argument('--epochs', type=int, default=300, help='训练轮次')
parser.add_argument('--batch-size', type=int, default=16, help='批次大小')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='输入图像尺寸')
args = parser.parse_args()

这样我们的数据集包括训练参数工作就已经做完了,剩下的就是训练了。

打开一开始的.md会有教程也可以直接看下面我打出的代码。

开始训练

 在终端输入

cd ultralytics-8.3.27

python train_v8.py --cfg ultralytics/cfg/models/v8/yolov8.yaml

即可开始训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值