人工蜂群算法(ABC)matlab代码实现

文章介绍了人工蜂群算法(ABC)的基本原理,包括其模仿蜜蜂采蜜行为的三种角色——雇佣蜂、侦查蜂和跟随蜂,以及算法的实现步骤。在MATLAB中,ABC算法被用于解决优化问题,通过迭代和比较解的适应度来寻找全局最优解。代码示例展示了算法的具体实现过程,包括雇佣蜂、侦查蜂和跟随蜂的阶段,并在CEC2017测试集函数上进行测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.简介

人工蜂群算法(Artificial Bee Colony, ABC)是一种基于仿生学原理的启发式优化算法,仿照了蜜蜂采蜜的行为,将搜索空间看成花丛,通过三种不同类型的“蜜蜂”(即雇佣蜂、侦查蜂和跟随蜂)在搜索空间内寻找最优解。ABC算法具有全局搜索能力强、运算速度快、易于实现等特点,在优化问题的求解中有着广泛的应用。

2.实现步骤

ABC算法可以简要概括为以下几个步骤:

1.初始化:随机生成一群蜜蜂(解),计算出所有蜜蜂的适应度(目标函数值)。

2.雇佣蜂阶段:每一只雇佣蜂都负责从她的当前位置(解)开始,按照一定策略搜索周围的解,并将自己的解和周围的解进行比较,选择最优解并更新。

3.侦查蜂阶段:如果雇佣蜂在探索过程中没有找到更优的解,那么她就变成了侦查蜂,继续在其他位置随机寻找解。

4.跟随蜂阶段:每一只跟随蜂都“听从”她所属的雇佣蜂的指导,在雇佣蜂已经发现的最优解附近进行搜索。

5.更新全局最优解:每轮迭代结束后,用所有蜜蜂的最优解更新全局最优解。

6.判断停止条件:当满足预设停止条件时,结束算法迭代,输出全局最优解。

3代码实现

%% 人工蜂群算法
clear
clc
tic
for func_num=1:30
    func_num
%% 基本参数设置
    gy_size=50;
    gc_size=30;
    D=30;
    limit=200;
    maxmark=D*10000;
    a=-100;
    b=100;
    x=rand(gy_size,D)*(a-b)+a;
    fit=cec17_func(x',func_num);
    marks=gy_size;
    [minx,best]=min(fit);
    g=1;
    trace=[minx];
    L=zeros(gy_size,1);
% 开始迭代,以评价次数作为迭代终止条件
    while marks<maxmark
%% 雇佣蜂阶段,对每个蜜源周围进行探索
        for i=1:gy_size
            k=randi(gy_size,1);
            while k==i
                k=randi(gy_size,1);
            end
            F=rand*2-1;
            v(i,:)=x(i,:)+F*(x(i,:)-x(k,:));
            for j=1:D
                if v(i,j)>b
                    v(i,j)=b;
                end
                if v(i,j)<a
                    v(i,j)=a;
                end
            end
        end
        fit1=cec17_func(v',func_num);
        marks=marks+gy_size;
        for i=1:gy_size
            if fit1(i)<fit(i)
                x(i,:)=v(i,:);
                fit(i)=fit1(i);
            else
                L(i)=L(i)+1;
            end
        end
%% 观察蜂阶段,采用轮盘赌的方式进行蜜源的选取
        meanfit=mean(fit);
        for i =1:gy_size
            f(i)=exp(-fit(i)/meanfit);
        end
        P=cumsum(f/sum(f));
        for i=1:gc_size
            r=rand;
            j=find(r<=P,1,'first');
            k=randi(gy_size,1);
            while k==j
                k=randi(gy_size,1);
            end
            F=rand*2-1;
            u=x(j,:)+F*(x(j,:)-x(k,:));
            for cnt=1:D
                if u(cnt)>b
                    u(cnt)=b;
                end
                if u(cnt)<a
                    u(cnt)=a;
                end
            end
            fit2=cec17_func(u',func_num);
            marks=marks+1;
            if fit2<fit(j);
                x(j,:)=u;
                fit(j)=fit2;
            else
                L(j)=L(j)+1;
            end
        end
%% 侦察蜂阶段,对过度开采的蜜源进行更新,采用随机选点的方式进行
        for i=1:gy_size
            if L(i)>=limit
                x(i,:)=(b-a).*rand(1,D)+a;
                fit(i)=cec17_func(x(i,:)',func_num);
                marks=marks+1;
                L(i)=0;
            end
        end
        [minx1,best]=min(fit);
        if minx1<minx
            minx=minx1;
        end
        trace=[trace minx];
        tt=minx;
    end
%% 结束迭代,进行图像绘制和最小值输出等操作
    tt
    x(1,:);
    figure(func_num);
    plot(trace);
    title(['ABC','最小值',num2str(tt)]);
    xlabel('迭代次数');
    ylabel('目标函数值');
end
toc

注:测试函数使用的是CEC2017的测试集函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值