FTA故障树分析

1. 故障树的术语与符号

1.1 故障树分析的定义

故障树分析是产品安全性,可靠性的分析工具之一

1.2 事件的定义

  • 事件:描述系统或零件故障的状态
  • 顶事件:是故障树分析中所关心的最后结果事件。它位于故障树顶端,总是逻辑门的输出事件而不是输入事件。
  • 底事件:是故障树中导致其他事件的原因事件。它位于故障树的底端。它总是逻辑门的输入事件而不是输出事件。底事件分为基本事件未探明事件

1.3 事件的符号

1.4 逻辑门的术语与符号

  • 顺序与门:在故障树分析(FTA)中用来描述事件之间的逻辑关系。顺序与门表示输入事件既要都发生,又要按一定的顺序发生,输出事件才会发生。这种门在分析系统故障或事故原因时非常重要,因为它能帮助识别出那些不仅必须发生,而且必须按照特定顺序发生的事件。

逻辑门下面的事件是输入事件,上面是输出事件

2. 故障树的建立

下面以一个电机合电后不工作为例,讲解一下故障树的建立

  • 电路的构成为电机,电源,导线,开关组成
  • 顶事件为“开关合上后电机不转”

2.1 故障树分析的一般步骤

  1. 准备工作:熟悉设计的说明,原理图,结果图,运行与维修的规程
  2. 确认顶事件:选择最不希望发生的事件为顶事件
  3. 建立故障树:使用逻辑门进行分析

2.2 确认顶事件的原则

  • 选择影响陈品计数性能、经济型、可靠性和安全性的故障
  • 选择FMECA中严酷度为Ⅰ,Ⅱ类的故障
  • 重大故障或事故作为顶事件、故障归零的依据
  • 顶事件必须严格定义

2.3 建立故障树的基本原则

  • 明确边界条件,进行适当简化
    建立故障树之前,根据分析的目的,明确分析的系统与其他系统的接口边界。同时做一些必要的假设(比如不考虑人的因素,某些设备或线路的故障)。

    • 边界条件应包括
      初始状态。当系统中的部件有数种工作状态时,应指明与顶事件发生有关部件的工作状态;
      不容许事件。建立故障树的过程中认为不容许发生的事件;
      必然事件。在一定条件下必然发生的事件和必然 不发生的事件。
  • 故障事件要严格定义
    明确故障是什么,和什么情况下发生故障。

  • 从上向下逐级建树

  • 用直接事件逐步取代间接事件

    1. 假设在构建一个关于汽车无法启动的故障树时,最初可能将“点火系统故障”作为一个中间事件。
    2. 随着分析的进行,这个中间事件可能会被更具体的直接事件所取代,如“火花塞不点火”、“点火线圈故障”等。
    3. 最终,这些直接事件将帮助维修人员准确地定位并解决问题。
  • 处理共因事件和互斥事件

    • 共因事件:
    • 互斥事件:不可能同时发生的事件

3. 故障树的定性分析

  • 寻找导致顶事件发生原因和原因组合,识别导致顶事件发生的所有故障模式。

3.1 最小割集

  • 割集
    一些事件的集合,当这些底事件同时发生时,顶事件必然发生。
    如下示例,三个集合都是割集

  • 最小割集
    最小割集的含义
    将割集中所含的底事件任意去掉一个就不再称为割集。最小割集代表了引起顶事件发生的故障原因。

  • 最小割集的阶数
    最小割集的阶数指的是构成该最小割集的基本事件(或称为底事件)的数量

  • 最小割集求法

    • 下行法:

    • 上行法:

3.2 最小割集的定性比较

  • 阶数越小的最小割集越重要:{X1} {X2,X3} {X4,X5,X6}
  • 在低阶最小割集中出现的底事件比高阶最小割集中的底事件重要 {X2,X3} {X4,X5,X6}
  • 在最小割集阶数相同的条件下,在不同最小割集中重复出现的次数越多的底事件越重要{X1,X2,X3},{X1,X2,X4},{X1,X3,X5}三个同阶最小割集中,X1重复出现的次数最多,那么它就是最重要的。

4. 故障树的定量分析

  • 顶事件发生的概率计算
    通过集合与概率计算,计算出顶事件发生的概率

    • 目的:
      确定顶事件的发生概率
      确定底事件的重要度

    • 使用容斥定理进行顶事件的概率的计算:
      P ( T ) = P ( K 1 ∪ K 2 ∪ ⋯ ∪ K N k ) = ∑ i = 1 N k P ( K i ) − ∑ i < j = 2 N k P ( K i K j ) + ∑ i < j < k = 3 N k P ( K i K j K k ) + ⋯ + ( − 1 ) N k − 1 P ( K 1 , K 2 , ⋯ K N k ) \begin{aligned} P(T) & =P\left(K_{1} \cup K_{2} \cup \cdots \cup K_{N_{k}}\right) \\ & =\sum_{i=1}^{N_{k}} P\left(K_{i}\right)-\sum_{i<j=2}^{N_{k}} P\left(K_{i} K_{j}\right)+\sum_{i<j<k=3}^{N_{k}} P\left(K_{i} K_{j} K_{k}\right)+\cdots+(-1)^{N_{k}-1} P\left(K_{1}, K_{2}, \cdots K_{N_{k}}\right) \end{aligned} P(T)=P(K1K2KNk)=i=1NkP(Ki)i<j=2NkP(KiKj)+i<j<k=3NkP(KiKjKk)++(1)Nk1P(K1,K2,KNk)

  • 底事件重要度分析的示例
    简单来说就是一个若干个底事件中,某个底事件的微小变化导致顶事件的变化最大。这个底事件就是最重要的。由此可见,需要进行偏分计算。
    如下:

5. 故障树的规范化与简化

5.1 故障树的规范化

  • 未探明事件的2种处理方法:

    • 当作基本事件
    • 删去
  • 顺序与门变换为与门

  • 表决门变换为或门和与门的组合

  • 异或门变换为或门,与门和非门的组合

  • 禁门变换为与门

5.2 故障树的简化

去掉明显的逻辑多余事件和明显的逻辑多余门

6. 故障树工程应用要点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值