数论与组合数学


数论与组合数学


数论部分

数论简介、素数、算术基本 定理

自然数的基本性质
  • 数学归纳法PMI (Principle of Mathematical Induction)

​ 如果 p 1 p_1 p1 是真的,并且 p n ⇒ p n + 1 p_n \Rightarrow p_{n+1} pnpn+1,那么 p n p_n pn对于所有自然数来说都是真的。

  • 良序定理WOP (Well Ordering Principle)

​ 每个非空集合都存在一个最小元素。

GCD(Greatest Common Divisor)
  • 整除:a|b 读作a整除b。b=a*整数

  • 辗转相除法

int gcd(int m,int n)
{
    if(n==0) return m;
    else return gcd(n,m%n);
}
  • 定理:
    L e t g = gcd ⁡ ( a , b ) , then  ∃ v 0 , y 0 ∈ Z  such that  g = a x 0 + b y 0 .  { Let } g=\operatorname{gcd}(a, b) \text {, then } \exists v_{0}, y_{0} \in Z \text { such that } g=a x_{0}+b y_{0} \text {. } Letg=gcd(a,b), then v0,y0Z such that g=ax0+by0

例题

在这里插入图片描述

同余、中国剩余定理

同余
  • 定义: a ≡ b  mod  m  代表  m ∣ ( a − b ) ( a , b , m ∈ Z , m ≠ 0 ) a \equiv b \text { mod } m \text { 代表 } m \mid(a-b)(a, b, m \in Z, m \neq 0) ab mod m 代表 m(ab)(a,b,mZ,m=0)

  • 性质(3)

欧拉定理
  • 欧拉梯度函数: ϕ ( m ) \phi(m) ϕ(m)表示1…m中与m互质元素的个数。(既约剩余系)

  • 完全剩余系:mod m的互不同余的所有数的集合
    既约剩余系:mod m的互不同余且和m互质的所有数的集合

  • 欧拉定理: I f  gcd(a,m)=1  , a ϕ ( m ) ≡ 1  mod m . \mathrm{ If } \text { gcd(a,m)=1 }, \text a^{\phi(m)}\equiv1 \text { mod m}. If gcd(a,m)=1 ,aϕ(m)1 mod m.

  • 费马小定理:如果p为质数,那么 a p ≡ a ( m o d   p ) a^p\equiv a(mod \ p) apa(mod p)

  • Wilson’s Theorem:  If  p  is a prime, then  ( p − 1 ) ! ≡ − 1   m o d   p \text { If }p\text{ is a prime, then }(p-1)!\equiv-1 \ mod \ p  If p is a prime, then (p1)!1 mod p

例题:求一个幂的最后一位

在这里插入图片描述

模逆元

在这里插入图片描述

例题:欧几里得拓展算法求模逆元

在这里插入图片描述

线性同余方程组

线性同余方程组: ax=b mod m \text {ax=b mod m} ax=b mod m
有解判定:令g=gcd(a,m),当且仅当g|b时,ax=b mod m才有解,且有g mod m个解。

例题:求解线性同余方程
在这里插入图片描述

中国剩余定理

在这里插入图片描述

Hensel 引理

在这里插入图片描述

两道例题

在这里插入图片描述

在这里插入图片描述

模多项式

f ( x ) ≡ 0 m o d p  (p is a prime) of degree  n  has at most  n  solutions. \begin{aligned}&f(x)\equiv0\mathrm{ mod }p\text{ (p is a prime) of degree }n\text{ has at most }n \text{ solutions.}\end{aligned} f(x)0modp (p is a prime) of degree n has at most n solutions.

在这里插入图片描述

  • 定义:gcd(a,m)=1,满足 a h = 1 m o d a^h=1mod ah=1mod m m m的最小正整数h是a mod m 的阶,写作 h = o r d m ( a ) h=ord_m\left(a\right) h=ordm(a)

  • 定理:

    • 其余满足该式的幂次都是h的倍数

    • a k a^k ak mod m m m的阶是 h q c d ( k , h ) \frac h{qcd(k,h)} qcd(k,h)h

    • a   m o d   m a \ mod\ m a mod m的阶是h b m o d      m b \mod \ m bmod m的阶是khk互素,则ab mod m的阶是hk

原根
  • 定义:a mod m的阶是 ϕ ( m ) \phi(m) ϕ(m),则a是原根

  • 定理:

    • p, q是素数, q e ∣ p − 1 q^e|p-1 qep1,则存在元素mod p的阶是 q e q^e qe
  • 原根数量:mod m的原根数量是 ϕ ( ϕ ( m ) ) \phi(\phi(m)) ϕ(ϕ(m))

  • 原根存在判定:当且仅当 m = 1 , 2 , 4 , p e , 2 p e m=1,2,4,p^e,2p^e m=1,2,4,pe,2pe​时,m存在原根

平方剩余、二次互反律

平方剩余
  • 定义: p是素数, a ≠ 0 m o d p ,当 a = b 2   m o d p 时,a是平方剩余,否则是平方非剩余 \text{p是素数,}a\neq0\mathrm{ }mod\mathrm{ }p\text{,当}a=b^2 \ mod\mathrm{ }p\text{时,a是平方剩余,否则是平方非剩余} p是素数,a=0modp,a=b2 modp,a是平方剩余,否则是平方非剩余
  • 定理: a ≠ 0 m o d p , a p − 1 2 = 1 m o d p ⇒ а是平方剩余 a\neq0\mathrm{ }mod\mathrm{ }p,a^{\frac{p-1}2}=1\mathrm{ }mod\mathrm{ }p\Rightarrow\text{а是平方剩余} a=0modp,a2p1=1modpа是平方剩余

15是17的平方剩余: 1 5 17 − 1 2 ≡ 1 m o d 17. 15^{\frac{17-1}2}\equiv1\mathrm{ mod }17. 1521711mod17.

12不是17的平方剩余: 1 2 17 − 1 2 ≡ − 1 m o d 17. 12^{\frac{17-1}2}\equiv-1 mod 17. 1221711mod17.

例题:形式转换

在这里插入图片描述

Legendre符号
  • 定义:

p为素数
( a p ) = { 1 如果  a  是模  p  的平方剩余 − 1 如果  a  不是模  p  的平方剩余 \left( \frac{a}{p} \right) = \begin{cases} 1 & \text{如果 } a \text{ 是模 } p \text{ 的平方剩余} \\ -1 & \text{如果 } a \text{ 不是模 } p \text{ 的平方剩余} \end{cases} (pa)={11如果 a 是模 p 的平方剩余如果 a 不是模 p 的平方剩余

( a p ) = a p − 1 2 m o d    p \left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p (pa)=a2p1modp

最后得到结果无非就是 1 1 1 − 1 -1 1,可见 Table of x^k mod m

  • 意义:

由Legendre符号的定义可以看出,如果能够很快地算出它的值,那么就会立刻知道同余式是否有解。具体地说:

x 2 ≡ a ( m o d p ) , p  是奇素数 , a ∈ Z x^2 \equiv a \pmod{p}, \quad p \text{ 是奇素数}, \quad a \in \mathbb{Z} x2a(modp),p 是奇素数,aZ

  1. ( a p ) = 1 \left(\frac{a}{p}\right) = 1 (pa)=1 时, a a a 是模 p p p 的平方剩余,根据平方剩余的定义,同余式有解。

  2. ( a p ) = 0 \left(\frac{a}{p}\right) = 0 (pa)=0 时,有 p ∣ a ⇒ a ≡ 0 ( m o d p ) p \mid a \Rightarrow a \equiv 0 \pmod{p} paa0(modp),此时同余式 x 2 ≡ a ≡ 0 ( m o d p ) x^2 \equiv a \equiv 0 \pmod{p} x2a0(modp) 有唯一解 x ≡ 0 ( m o d p ) x \equiv 0 \pmod{p} x0(modp)

  3. ( a p ) = − 1 \left(\frac{a}{p}\right) = -1 (pa)=1 时, a a a 是模 p p p 的平方非剩余,由平方非剩余的定义,同余式无解。

定理及例题 :

在这里插入图片描述

高斯引理

在这里插入图片描述

  • 小结论 ( 2 p ) = ( − 1 ) p 2 − 1 8 \left(\frac2p\right)=(-1)^{\frac{p^2-1}8} (p2)=(1)8p21
二次互反律
  • 定义:当p、q都为素数时

( p q ) = { + ( q p ) 如果  p ≡ 1 ( m o d 4 )  或  q ≡ 1 ( m o d 4 ) − ( q p ) 如果  p ≡ q ≡ 3 ( m o d 4 ) \left( \frac{p}{q} \right) = \begin{cases} +\left( \frac{q}{p} \right) & \text{如果 } p \equiv 1 \pmod{4} \text{ 或 } q \equiv 1 \pmod{4} \\ -\left( \frac{q}{p} \right) & \text{如果 } p \equiv q \equiv 3 \pmod{4} \end{cases} (qp)= +(pq)(pq)如果 p1(mod4)  q1(mod4)如果 pq3(mod4)

大量的练习题:

Toneli-Shanks算法可用于求解二次同余方程组的解】

分圆多项式、算术函数

欧拉函数的计算

在这里插入图片描述

分圆多项式
  • 定义: 对正整数n来说,能整除 x n − 1 但不能整除 x k − 1 ( k < n ) 的多项式是分圆多项式,用 ϕ n ( x ) 表示。 \text{对正整数n来说,能整除}x^n-1\text{但不能整除}x^k-1(k<n)\text{的多项式是分圆多项式,用}\phi_n\left(x\right)\text{表示。} 对正整数n来说,能整除xn1但不能整除xk1(k<n)的多项式是分圆多项式,ϕn(x)表示。

在这里插入图片描述

  • 定理1: x n − 1 = ∏ d ∣ n ϕ d ( x ) x^n-1=\prod_{d|n} \phi_d\left(x\right) xn1=dnϕd(x)
  • 定理2: ϕ n ( x ) 的最高次 n = ϕ ( x ) \phi_n\left(x\right)\text{的最高次}n=\phi(x) ϕn(x)的最高次n=ϕ(x)
算数函数
  • 加性 f(mn)=f(m)+f(n)
  • 乘性 f(mn)=f(m)f(n)

函数举例:

在这里插入图片描述

连分式

  • Golden Ratio:[1,1,1,1,1...]

  • sqrt(2):[1,2,2,2,2...]

有理数(分数)转化:

在这里插入图片描述

无理数转化:

Real number x x x, compute integers a 0 , a 1 , ⋯ a_0,a_1,\cdots a0,a1,,such that a 0 = ⌊ x ⌋ . a_0=\lfloor x\rfloor . a0=x.
x = a 0 + 1 a 1 + 1 a 2 + 1 ⋱ + 1 a n x=a_0+\frac1{a_1+\frac1{a_2+\frac1{\ddots+\frac1{a_n}}}} x=a0+a1+a2++an1111
x 1 = 1 x − a 0 x_1=\frac{1}{x-a_0} x1=xa01,then a 1 = ⌊ x 1 ⌋ a_1=\lfloor x_1\rfloor a1=x1,

x 2 = 1 x 1 − a 1 x_2=\frac1{x_1-a_1} x2=x1a11, then a 2 = ⌊ x 2 ⌋ , ⋯ a_2=\lfloor x_2\rfloor,\cdots a2=x2,


组合数学部分

基本计数原理

加法原理
乘法原理

例题:

在这里插入图片描述

数学归纳法

PMI

鸽巢原理

在这里插入图片描述

容斥原理

在这里插入图片描述

错排问题

有n个信封,n封信。求每封信都对应错误信封的方案数量

  • 递推公式:

    • D(1)=0,D(2)=1

    • D(n)=(n-1)(D(n-1)+D(n-2))

  • 生成函数: d n = n ! ∑ k = 0 n ( − 1 ) k k ! d_n =n!\sum_{k=0}^n\frac{(-1)^k}{k!} dn=n!k=0nk!(1)k

排列与组合

基础

在这里插入图片描述

二项式系数
  • 二项式系数: ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k . (x+y)^n=\sum_{k=0}^n\binom nkx^{n-k}y^k. (x+y)n=k=0n(kn)xnkyk.
  • 证明:

在这里插入图片描述

划分

组成

针对n个相同的球,放到k个同种箱子(是否可空)

在这里插入图片描述

  • 正整数n有 2 n − 1 2^{n-1} 2n1个不同划分
集合划分

针对n个不相同的球,放到k个不同种箱子

  • 第二种斯特林数:The number of partitions of an 𝑛-element set into exactly 𝑘 nonempty parts is the Stirling number of the second kind 𝑆(𝑛, 𝑘) .

For all positive integers  k < n , S ( n , k ) = S ( n − 1 , k − 1 ) + k ⋅ S ( n − 1 , k ) . \text{For all positive integers }k<n,\\ S(n,k)=S(n-1,k-1)+k\cdot S(n-1,k). For all positive integers k<n,S(n,k)=S(n1,k1)+kS(n1,k).

S(7,4)S(8,3)谁更大?

在这里插入图片描述

  • Bell number  B n \text{Bell number }B_n Bell number Bn

B n = ∑ k = 0 n S ( n , k ) B_n=\sum_{k=0}^nS\left(n,k\right) Bn=k=0nS(n,k)

e.g. 𝐵_3 = 5. 𝐵_1 = 1. We define 𝐵_0=1

整数划分

n个相同的球,放到k个相同箱子的不同分法

  • 费勒斯图

结论1:将n个分为k堆的方案数=将n个元素最多的一堆中有k个元素的方案数

结论2:集合划分为奇数份的方案数等于所有总数为n的自共轭图的种数。

生成函数

  • 两项递推类型

例题:求递推公式

在这里插入图片描述

在这里插入图片描述

  • 三项类型

在这里插入图片描述

斐波那契
  • 结论及证明:

在这里插入图片描述

卡特兰数

应用
  • 括号匹配
  • 不过对角线方案数量

在这里插入图片描述

通项公式

C n = 1 n + 1 ( 2 n n ) C_n=\frac1{n+1}\binom{2n}n Cn=n+11(n2n)

  • 15
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值