数论与组合数学
文章目录
数论部分
数论简介、素数、算术基本 定理
自然数的基本性质
- 数学归纳法
PMI (Principle of Mathematical Induction)
如果 p 1 p_1 p1 是真的,并且 p n ⇒ p n + 1 p_n \Rightarrow p_{n+1} pn⇒pn+1,那么 p n p_n pn对于所有自然数来说都是真的。
- 良序定理
WOP (Well Ordering Principle)
每个非空集合都存在一个最小元素。
GCD(Greatest Common Divisor)
-
整除:
a|b
读作a整除b。b=a*整数
-
辗转相除法
int gcd(int m,int n)
{
if(n==0) return m;
else return gcd(n,m%n);
}
- 定理:
L e t g = gcd ( a , b ) , then ∃ v 0 , y 0 ∈ Z such that g = a x 0 + b y 0 . { Let } g=\operatorname{gcd}(a, b) \text {, then } \exists v_{0}, y_{0} \in Z \text { such that } g=a x_{0}+b y_{0} \text {. } Letg=gcd(a,b), then ∃v0,y0∈Z such that g=ax0+by0.
例题
同余、中国剩余定理
同余
-
定义: a ≡ b mod m 代表 m ∣ ( a − b ) ( a , b , m ∈ Z , m ≠ 0 ) a \equiv b \text { mod } m \text { 代表 } m \mid(a-b)(a, b, m \in Z, m \neq 0) a≡b mod m 代表 m∣(a−b)(a,b,m∈Z,m=0)
-
性质(3)
欧拉定理
-
欧拉梯度函数: ϕ ( m ) \phi(m) ϕ(m)表示1…m中与m互质元素的个数。(既约剩余系)
-
完全剩余系:mod m的互不同余的所有数的集合
既约剩余系:mod m的互不同余且和m互质的所有数的集合 -
欧拉定理: I f gcd(a,m)=1 , a ϕ ( m ) ≡ 1 mod m . \mathrm{ If } \text { gcd(a,m)=1 }, \text a^{\phi(m)}\equiv1 \text { mod m}. If gcd(a,m)=1 ,aϕ(m)≡1 mod m.
-
费马小定理:如果p为质数,那么 a p ≡ a ( m o d p ) a^p\equiv a(mod \ p) ap≡a(mod p)
-
Wilson’s Theorem: If p is a prime, then ( p − 1 ) ! ≡ − 1 m o d p \text { If }p\text{ is a prime, then }(p-1)!\equiv-1 \ mod \ p If p is a prime, then (p−1)!≡−1 mod p
例题:求一个幂的最后一位
模逆元
例题:欧几里得拓展算法求模逆元
线性同余方程组
线性同余方程组:
ax=b mod m
\text {ax=b mod m}
ax=b mod m
有解判定:令g=gcd(a,m)
,当且仅当g|b
时,ax=b mod m
才有解,且有g mod m
个解。
例题:求解线性同余方程
中国剩余定理
Hensel 引理
两道例题
模多项式
f ( x ) ≡ 0 m o d p (p is a prime) of degree n has at most n solutions. \begin{aligned}&f(x)\equiv0\mathrm{ mod }p\text{ (p is a prime) of degree }n\text{ has at most }n \text{ solutions.}\end{aligned} f(x)≡0modp (p is a prime) of degree n has at most n solutions.
阶
-
定义:gcd(a,m)=1,满足 a h = 1 m o d a^h=1mod ah=1mod m m m的最小正整数h是a mod m 的阶,写作 h = o r d m ( a ) h=ord_m\left(a\right) h=ordm(a)
-
定理:
-
其余满足该式的幂次都是h的倍数
-
a k a^k ak mod m m m的阶是 h q c d ( k , h ) \frac h{qcd(k,h)} qcd(k,h)h
-
a m o d m a \ mod\ m a mod m的阶是
h
, b m o d m b \mod \ m bmod m的阶是k
,hk互素
,则ab mod m的阶是hk
-
原根
-
定义:a mod m的阶是 ϕ ( m ) \phi(m) ϕ(m),则a是原根
-
定理:
- p, q是素数, q e ∣ p − 1 q^e|p-1 qe∣p−1,则存在元素mod p的阶是 q e q^e qe
-
原根数量:mod m的原根数量是 ϕ ( ϕ ( m ) ) \phi(\phi(m)) ϕ(ϕ(m))
-
原根存在判定:当且仅当 m = 1 , 2 , 4 , p e , 2 p e m=1,2,4,p^e,2p^e m=1,2,4,pe,2pe时,m存在原根
平方剩余、二次互反律
平方剩余
- 定义: p是素数, a ≠ 0 m o d p ,当 a = b 2 m o d p 时,a是平方剩余,否则是平方非剩余 \text{p是素数,}a\neq0\mathrm{ }mod\mathrm{ }p\text{,当}a=b^2 \ mod\mathrm{ }p\text{时,a是平方剩余,否则是平方非剩余} p是素数,a=0modp,当a=b2 modp时,a是平方剩余,否则是平方非剩余
- 定理: a ≠ 0 m o d p , a p − 1 2 = 1 m o d p ⇒ а是平方剩余 a\neq0\mathrm{ }mod\mathrm{ }p,a^{\frac{p-1}2}=1\mathrm{ }mod\mathrm{ }p\Rightarrow\text{а是平方剩余} a=0modp,a2p−1=1modp⇒а是平方剩余
15是17的平方剩余: 1 5 17 − 1 2 ≡ 1 m o d 17. 15^{\frac{17-1}2}\equiv1\mathrm{ mod }17. 15217−1≡1mod17.
12不是17的平方剩余: 1 2 17 − 1 2 ≡ − 1 m o d 17. 12^{\frac{17-1}2}\equiv-1 mod 17. 12217−1≡−1mod17.
例题:形式转换
Legendre符号
- 定义:
p为素数
(
a
p
)
=
{
1
如果
a
是模
p
的平方剩余
−
1
如果
a
不是模
p
的平方剩余
\left( \frac{a}{p} \right) = \begin{cases} 1 & \text{如果 } a \text{ 是模 } p \text{ 的平方剩余} \\ -1 & \text{如果 } a \text{ 不是模 } p \text{ 的平方剩余} \end{cases}
(pa)={1−1如果 a 是模 p 的平方剩余如果 a 不是模 p 的平方剩余
( a p ) = a p − 1 2 m o d p \left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p (pa)=a2p−1modp
最后得到结果无非就是
1
1
1 或
−
1
-1
−1,可见 Table of x^k mod m
。
- 意义:
由Legendre符号的定义可以看出,如果能够很快地算出它的值,那么就会立刻知道同余式是否有解。具体地说:
x 2 ≡ a ( m o d p ) , p 是奇素数 , a ∈ Z x^2 \equiv a \pmod{p}, \quad p \text{ 是奇素数}, \quad a \in \mathbb{Z} x2≡a(modp),p 是奇素数,a∈Z
-
当 ( a p ) = 1 \left(\frac{a}{p}\right) = 1 (pa)=1 时, a a a 是模 p p p 的平方剩余,根据平方剩余的定义,同余式有解。
-
当 ( a p ) = 0 \left(\frac{a}{p}\right) = 0 (pa)=0 时,有 p ∣ a ⇒ a ≡ 0 ( m o d p ) p \mid a \Rightarrow a \equiv 0 \pmod{p} p∣a⇒a≡0(modp),此时同余式 x 2 ≡ a ≡ 0 ( m o d p ) x^2 \equiv a \equiv 0 \pmod{p} x2≡a≡0(modp) 有唯一解 x ≡ 0 ( m o d p ) x \equiv 0 \pmod{p} x≡0(modp)。
-
当 ( a p ) = − 1 \left(\frac{a}{p}\right) = -1 (pa)=−1 时, a a a 是模 p p p 的平方非剩余,由平方非剩余的定义,同余式无解。
定理及例题 :
高斯引理
- 小结论: ( 2 p ) = ( − 1 ) p 2 − 1 8 \left(\frac2p\right)=(-1)^{\frac{p^2-1}8} (p2)=(−1)8p2−1
二次互反律
- 定义:
当p、q都为素数时
( p q ) = { + ( q p ) 如果 p ≡ 1 ( m o d 4 ) 或 q ≡ 1 ( m o d 4 ) − ( q p ) 如果 p ≡ q ≡ 3 ( m o d 4 ) \left( \frac{p}{q} \right) = \begin{cases} +\left( \frac{q}{p} \right) & \text{如果 } p \equiv 1 \pmod{4} \text{ 或 } q \equiv 1 \pmod{4} \\ -\left( \frac{q}{p} \right) & \text{如果 } p \equiv q \equiv 3 \pmod{4} \end{cases} (qp)=⎩ ⎨ ⎧+(pq)−(pq)如果 p≡1(mod4) 或 q≡1(mod4)如果 p≡q≡3(mod4)
大量的练习题:
【
Toneli-Shanks
算法可用于求解二次同余方程组的解】
分圆多项式、算术函数
欧拉函数的计算
分圆多项式
- 定义: 对正整数n来说,能整除 x n − 1 但不能整除 x k − 1 ( k < n ) 的多项式是分圆多项式,用 ϕ n ( x ) 表示。 \text{对正整数n来说,能整除}x^n-1\text{但不能整除}x^k-1(k<n)\text{的多项式是分圆多项式,用}\phi_n\left(x\right)\text{表示。} 对正整数n来说,能整除xn−1但不能整除xk−1(k<n)的多项式是分圆多项式,用ϕn(x)表示。
- 定理1: x n − 1 = ∏ d ∣ n ϕ d ( x ) x^n-1=\prod_{d|n} \phi_d\left(x\right) xn−1=d∣n∏ϕd(x)
- 定理2: ϕ n ( x ) 的最高次 n = ϕ ( x ) \phi_n\left(x\right)\text{的最高次}n=\phi(x) ϕn(x)的最高次n=ϕ(x)
算数函数
- 加性
f(mn)=f(m)+f(n)
- 乘性
f(mn)=f(m)f(n)
函数举例:
连分式
-
Golden Ratio:[1,1,1,1,1...]
-
sqrt(2):[1,2,2,2,2...]
有理数(分数)转化:
无理数转化:
Real number
x
x
x, compute integers
a
0
,
a
1
,
⋯
a_0,a_1,\cdots
a0,a1,⋯,such that
a
0
=
⌊
x
⌋
.
a_0=\lfloor x\rfloor .
a0=⌊x⌋.
x
=
a
0
+
1
a
1
+
1
a
2
+
1
⋱
+
1
a
n
x=a_0+\frac1{a_1+\frac1{a_2+\frac1{\ddots+\frac1{a_n}}}}
x=a0+a1+a2+⋱+an1111
x
1
=
1
x
−
a
0
x_1=\frac{1}{x-a_0}
x1=x−a01,then
a
1
=
⌊
x
1
⌋
a_1=\lfloor x_1\rfloor
a1=⌊x1⌋,
x 2 = 1 x 1 − a 1 x_2=\frac1{x_1-a_1} x2=x1−a11, then a 2 = ⌊ x 2 ⌋ , ⋯ a_2=\lfloor x_2\rfloor,\cdots a2=⌊x2⌋,⋯
组合数学部分
基本计数原理
加法原理
乘法原理
例题:
数学归纳法
PMI
鸽巢原理
容斥原理
错排问题
有n个信封,n封信。求每封信都对应错误信封的方案数量
-
递推公式:
-
D(1)=0,D(2)=1
-
D(n)=(n-1)(D(n-1)+D(n-2))
-
-
生成函数: d n = n ! ∑ k = 0 n ( − 1 ) k k ! d_n =n!\sum_{k=0}^n\frac{(-1)^k}{k!} dn=n!∑k=0nk!(−1)k
排列与组合
基础
二项式系数
- 二项式系数: ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k . (x+y)^n=\sum_{k=0}^n\binom nkx^{n-k}y^k. (x+y)n=k=0∑n(kn)xn−kyk.
- 证明:
划分
组成
针对n个相同的球,放到k个同种箱子(是否可空)
- 正整数n有 2 n − 1 2^{n-1} 2n−1个不同划分
集合划分
针对n个不相同的球,放到k个不同种箱子
- 第二种斯特林数:The number of partitions of an 𝑛-element set into exactly 𝑘 nonempty parts is the Stirling number of the second kind
𝑆(𝑛, 𝑘)
.
For all positive integers k < n , S ( n , k ) = S ( n − 1 , k − 1 ) + k ⋅ S ( n − 1 , k ) . \text{For all positive integers }k<n,\\ S(n,k)=S(n-1,k-1)+k\cdot S(n-1,k). For all positive integers k<n,S(n,k)=S(n−1,k−1)+k⋅S(n−1,k).
S(7,4)
与S(8,3)
谁更大?
- Bell number B n \text{Bell number }B_n Bell number Bn
B n = ∑ k = 0 n S ( n , k ) B_n=\sum_{k=0}^nS\left(n,k\right) Bn=k=0∑nS(n,k)
e.g. 𝐵_3 = 5. 𝐵_1 = 1. We define 𝐵_0=1
整数划分
n个相同的球,放到k个相同箱子的不同分法
- 费勒斯图
结论1:将n个分为k堆的方案数=将n个元素最多的一堆中有k个元素的方案数
结论2:集合划分为奇数份的方案数等于所有总数为n的自共轭图的种数。
生成函数
- 两项递推类型
例题:求递推公式
- 三项类型
斐波那契
- 结论及证明:
卡特兰数
应用
- 括号匹配
- 不过对角线方案数量
通项公式
C n = 1 n + 1 ( 2 n n ) C_n=\frac1{n+1}\binom{2n}n Cn=n+11(n2n)