【Ollama+ChatBox+AnythingLLM】在 Mac 上部署 DeepSeek本地知识库

近期大模型技术因 DeepSeek 的问世而备受关注。本文以 DeepSeek-r1 为例,介绍一种最简单的方式来搭建与部署本地知识库。同时介绍当下流行的几款工具:【Ollama+ChatBox+AnythingLLM】

下载与部署

  1. 下载 Ollama

  2. 在 models 标签中选择指定的大模型版本

    ollama run deepseek-r1
    

    该命令会自动将模型安装到本地。

在这里插入图片描述

  1. 下载聊天界面可视化工具 Chatbox

    Chatbox 下载链接

远程连接

  1. 配置远程 Ollama 服务(可以在局域网内提供 API 供其他移动端访问)

    打开命令行终端,输入以下命令:

    launchctl setenv OLLAMA_HOST "0.0.0.0"
    launchctl setenv OLLAMA_ORIGINS "*"
    
    • 第一行:将 OLLAMA_HOST 环境变量设置为 0.0.0.0,这通常意味着应用程序将监听所有可用的网络接口。
    • 第二行:将 OLLAMA_ORIGINS 环境变量设置为 *,这通常意味着允许来自任何来源的请求。
  2. Chatbox 中设置 API 域名为当前网络状态下的 IP 地址加端口 11434。

在这里插入图片描述在这里插入图片描述

本地知识库

为了提高数据的安全性与隐私性,下述内容介绍一种在部署完本地大模型后搭建属于自己的知识库的简单方法AnythingLLM。AnythingLLM是一个功能丰富,集成度很高的RAG框架

  1. 下载 AnythingLLM

  2. 下载完成后,创建一个工作区并进行聊天设置。

在这里插入图片描述

  1. 点击上传按钮,将需要嵌入的文件上传。
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  1. 这样就可以实现离线上传文件与解析内容的功能。

在这里插入图片描述

明确几个概念

  • 检索增强生成原理(Retrieval-Augmented Generation,RAG)

RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。

img

  • 嵌入模型(Embedding Model)

嵌入模型是一种将文本转换为向量表示的模型。这些向量能够捕捉文本的语义信息,使得相似的文本在向量空间中距离更近。

  • 向量数据库(Vector Database)

向量数据库是一种专门用于存储和检索向量数据的数据库。

### 构建和部署 AnythingLLM 知识库系统 为了成功构建和部署 AnythingLLM 知识库系统,需遵循一系列特定的操作流程。首先,访问 AnythingLLM 官网 (https://anythingllm.com/) 并点击下载按钮来获取适用于目标操作系统的安装包[^2]。 #### 下载并准备环境 确保选择了与操作系统相匹配的版本进行下载。对于 Windows 用户来说,应选择 `.exe` 文件;而对于 Linux 或 macOS 用户,则应当寻找相应的二进制文件或者脚本形式的分发版。 #### 配置开发环境 在完成软件本身的安装之后,还需要配置必要的依赖项和支持工具。这通常涉及到 Python 版本的选择以及虚拟环境中相关库的安装。可以参考 GitHub 项目页面上的说明文档来进行详细的设置指导[^1]。 #### 初始化知识库 一旦基础架构已经就绪,就可以着手于初始化本地知识库了。此过程可能涉及数据集的导入、索引创建以及其他预处理工作。具体命令如下所示: ```bash git clone https://github.com/Mintplex-Labs/anything-llm.git cd anything-llm pip install -r requirements.txt python setup.py init_db ``` 这些指令会克隆仓库到本地机器上,并执行所需的Python包安装及数据库初始化操作。 #### 启动服务端口 最后一步是启动服务器以便能够通过网络接口与其他组件交互。一般情况下,默认监听的是 `localhost:8000` 这样的地址,但也可以根据实际情况调整参数来自定义绑定IP和端口号。 ```bash uvicorn main:app --host 0.0.0.0 --port 8000 ``` 上述命令将会运行 FastAPI 应用程序实例,在指定位置提供 RESTful API 接口供外部调用者求访问。 #### 测试连接性 确认一切正常运作后,可以通过浏览器或其他 HTTP客户端向刚才提到的服务发送测试查询以验证其可用性和响应速度等情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值